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Area functional

Suppose that u: Q — R is a C?-function, where Q c R? is a bounded
open set. Denote by ¥ = ¥, ¢ R3 its graph

L ={(x,y,u(x,y)): (x,y) € Q}.

It is a 2-dimensional submanifold of R3 and the tangent space (plane)
Tox atp = (x,y,u(x,y)) € X is spanned by vectors (1,0, ux) and
(0,1, uy), where uy and u, denote the partial derivatives of u with
respect to x and y, respectively.
The absolute value

(1,0, ux) x (0,1, uy)|

is the area of the parallelogram spanned by (1,0, ux) and (0, 1, uy),
and so the area of the graph is
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Area functional

A(Z):/Q|(1,o,ux)x(o,1,uy)\:/9\/m
:/Qm.

Let n € C3(). Then the graphs of u and u + tn, t € R, have the same
"boundary” 0X = {(x, y,u(x,y): (x,y) € 002} and

A(Eus) = /Q 1+ IVu+ v,

Suppose that ¥, has the minimal area among all graphs with the same
boundary 9% ,. Then, of course,

d
EA(zan)u:o =0.
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Minimal graph equation

Differentiating with respect to t and using Green’s formula we obtain

d d
d _a 2
th(ru+t77)|t:0 = dt/Q\/1 + |Vu -+ tVn)| |t=0

d
— 7 2
/Q dt\/1 +[Vu+ v

:/Q;u + IVUI2)1/2;<V(U+ tn), V(U + 1)) g
(Vu,Vn)

~Ja/T1 VP
Qn V14 |Vul?

=0.
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Minimal graph equation

We say that u € C?(Q) is a critical point for the area functional if

d
AT um)i0 =0 Vi€ CG5(Q).

In that case, since

/ dv|——% ) -0
Qn V14 |Vul?
for all n € C3(Q2), we conclude that u € C?(Q) is a critical point if and

only if it satisfies the minimal graph equation (or the mean curvature
equation)

\ L —0
V14 |Vul?
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Minimal graph equation

In particular, if u € C?(Q) minimizes the area (of graphs) among
smooth functions with the same values on 01, it is a solution to the
minimal graph equation.

Conversely, a critical point u for the area functional minimizes the area
among all (smooth) surfaces inside the cylinder Q x R with the same
boundary 0%,,.

For this and later purposes we note that the unit vector

(1705UX)X(0715U}/) (_UX7_U}/’1)

N: fr—
‘(1707UX)X(0717U}’)’ \/1 +’VU‘2
€R?
(—VU,1)

V1+|Vu?

is orthogonal to both (1,0, uy) and (0, 1, uy), and therefore it is the
(upwards pointing) unit normal to ¥ ..
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Minimal graph equation

We define a 2-form w in the cylinder Q x R by setting
w(X,Y) =det(X,Y,N)

for vectors X, Y € RS,
Note that w is the contraction by N of the standard volume form

O=dxNdyNdz, ie w= N1 =iy®. Hence w is the volume (area)
form of .

Sincew=adxAdy+bdxAdz+cdy Adzand

g 90, 5
(8X —ay> 1/1+|9uP,

_ / 2

b= (ax 8 = uy/y/1+|Vul?,

0o 0

_ (Y 9y_ 2
7w(8y’8z) ux/4/1+|Vul?,
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Minimal graph equation

we see that
_dxANdy — uxdy Adz — uyadz A dx

V1+|Vul?

Furthermore, since u satisfies the minimal graph equation, we obtain

w

dw = A ~|—2 S ax ANdy Adz
Ox \ \/1+|Vul? oy \ /1 +|Vul?
=0.

Thus w is a closed 2-form in the cylinder 2 x R.
Let then X be another (smooth) surface (not necessarily a graph) in
Q x R with the same boundary than ¥, (90X, = 0%). Then X and ¥,
bound an open set U ¢ R3 where dw = 0. The set U may have several
components but applying Stokes’ theorem in each component we

obtain
/ w= / o,
Yy Y
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Minimal graph equation

On the other hand, by definition |w(X, Y)| = | det(X, Y, N)| is the
volume of the polyhedron spanned by vectors X, Y, and N. In
particular, for any unit vectors X and Y,

lw(X,Y) <A1,
with the equality if and only if X, Y, and N are orthonormal. Hence
A(Zu):/ w:/ng(z). (1)
>y >

This shows that ¥, minimizes the area among such surfaces (inside
Q x R).

If Q is convex, then ¥, is area-minimizing among all surfaces ¥ c R®
with 09X = 9% . To see this, let X be such a surface and let

P: R3® — Q x R be the nearest point projection. The convexity of Q
implies that P is 1-Lipschitz map that is equal to the identity on Q x R.
In particular, A(PX) < A(X). Applying (1) to PX we obtain

A(Zy) < APE) < A(Y).
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Minimal graph equation

All of the above holds in higher dimensions, too.

Suppose that Q ¢ R” is a bounded open set and u: Q — R a smooth
function. Then the area (n-dimensional measure) of the graph

Yu={(xu(x):xeQ} CcQxR

A(u) :/Q\H + |Vul2dx.

If u e C?(Q) N C(R) is a solution to the minimal graph equation, its
graph X, need not minimize the area among all hypersurfaces with the
same boundary 0% . (Hardt, Lau, Lin: Non-minimality of minimal
graphs, Indiana Univ. Math. J. 36 (1987), 849-855)
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Standard connection of R™

We denote by
0

aX,' ’
the standard basis of R™. Thus these vectors are orthonormal with
respect to the standard inner product (-, -).
A vector field defined on an open set Q C R is a mapping V: Q — R™
which we write as

8,- 1,...,m,

Vo=V(p) =) V(p)o:

i=1

where vi: Q - R, i=1,..., m, are (component) functions.
Vector fields act on smooth functions f as

m
Vi=> Vi(p)oif, oif = R
i=1 !

llkka Holopainen (University of Helsinki) Minimal submanifolds July 6-10, 2015



Standard connection of R™

Thus

m

Vof := Vi(p) = Y _ V'(p)if(p) = (Vp. V£(p))

=1
is the directional derivative of f along vector V.
Let X and V be vector fields such that V is smooth (i.e. the component

functions v/ are smooth). Then the covariant derivative of V in the
direction X, is the vector

(VxV), = (Xpv', Xov?,..., Xpv) € R

and VxV is the vector field p — (Vx V) .

We denote by 7(2) the set of all smooth vector fields on @ C R™.
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Standard connection of R™

The mapping

Vi T(Q) x T(Q) - T(Q), V(X,Y)=VxY,

is called the Levi-Civita connection on 2. We also call it the standard
connection on Q c R™.

The standard connection has the following properties:

1. VxYis C>-linear in X: for every functions f, g € C*(Q) and
vector fields X, Y,V € T(Q)

VixigyV = fVxV+gVyV,;
2. VxYisR-linearin Y: forevery a bc R, X, Y,V € T(Q)
?X(aYanV) :a@XYer?XV;
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Standard connection of R™

3. V satisfies the Leibniz rule: for every f € C°(Q), X, Y € T(R)
Vx(fY) = fVxY + (XF)Y;
4. V is torsion-free: for every X, Y € T(Q)
TxY —VyX = [X, Y],
where [X, Y] € T(Q) is the Lie bracket
[X, Y]f = X(Yf) — Y(XF):

5. V is compatible with the standard inner product (-, -) of R™: for
every X, Y, Z € T(Q)

X(Y,Z) = (VxY,Z) + (Y, Vx2).

The standard connection V is the unique mapping
T(Q) x T(Q) — T(Q) satisfying the properties above.
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Riemannian metric on a submanifold of Rtk

Let Q Cc R" be an open set and ¢: Q — R™ a smooth mapping. We
say that ¢ is an immersion if the differential dy(x): R” — R™ is
injective for all x € Q. Then necessarily m > n.

If ¢ is one-to-one, the image M = pQ C R™ is called an immersed
submanifold of R™.

If, in addition, ¢ is a homeomorphism onto pQ C R™, then ¢ is an
embedding and M = ¢ is an n-dimensional submanifold of R™. Note
that here M has the relative topology.

In general, a smooth manifold M C R™ is a submanifold of R™ if the
inclusion 7: M — R™, 7(x) = x, is an embedding. [We use the
notation = = (w1, m2, ..., mm) for the inclusion, because then

mi: M — R will be the projection to the x;-axis.]

Let M C R™ be a smooth n-dimensional submanifold of R™. Thus
locally M can be parametrized by a smooth homeomorphism

¢: Q — U, where Q C R"” and U C M are open, and the differential
dp(x) at x is of rank n for every x € Q.
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Riemannian metric on a submanifold of Rtk

We identify the tangent space T,M, p € U, with the image
de(¢~1(p))R". Thus T,M is an n-dimensional vector subspace of R™.
Each T,M inherits an inner product (-, -) from R™: for every vectors
v,we TpM,

(v,w)=v-w,
where v - w is just the standard inner product in R™. This induced inner
product (-, -) defines the Riemannian metric (and thus the Riemannian
submanifold structure) on M.
For every p € M, the inner product of R™ splits R™ orthogonally into

ToM @ ToM*.

We write NoM = T,M+ and call it the normal space of M at p.
Furthermore, we denote by

TM=||TpM and NM= | | N;M
pEM pEM
the tangent and normal bundles, respectively.
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Levi-Civita connection on a submanifold of Rtk

Next we define the Levi-Civita connection V on M that satisfies
conditions 1.-5. above, in particular, that is compatible with the induced
Riemannian metric.

Let X, Y € T(Q) be smooth vector fields in an open set Q ¢ R™. Then
ateverype QnM

where
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Levi-Civita connection on a submanifold of Rtk

The Levi-Civita connection V of M is simply the orthogonal projection
on TM of the standard connection of R”. More precisely, let

X,Y € T(U) be smooth vector fields on an open set U C M, i.e. at
each point p e U

m m
Xo=>_d(p)ai, Yo=Y b(p)a;
i=1 i=1
where &, b': U — R are smooth functions. For each p € U, let X and

Y be (any) smooth extensions of X and Y to a neighborhood (in R™) of
p. Then we define

(VxY)p= (V5Y), € ToM,
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Levi-Civita connection on a submanifold of Rtk

where

is the orthogonal projection of (Vg V)p to ToM.

Remark

The properties 1.-5. hold for V. In particular, V is torsion-free and
compatible with the induced inner product (Riemannian metric).

| A\

Remark

Note thgt VxY is well-defined, i.e. does not depend on the extensions
Xand.

| \

v
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Second fundamental form of M

Denote by N (M) the set of all smooth mappings V: M — R such that
Vp € NoM for all p € M.

The second fundamental form of M is the map
B: T(M) x T(M) — N (M),

B(X.Y) = (V).

where X and Y are smooth extensions of X and Y, respectively.

Thus we have the Gauss formula on M
VxY =VxY +B(X,Y)

for vector fields X, Y € T(M).
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Second fundamental form of M

Note again that the left hand side makes sense since (?x Y)p
depends only on X, € T,M and values of Y along any path
v:]—¢,e[—= M, with v(0) = pand ¥y = Xp.
The second fundamental form is

(a) independent of extensions of X and Y;
(b) symmetricin X and Y;

(c) C°°-bilinear. )

Lemma [The Weingarten equation]

Suppose X, Y € T(M) and N € N (M). Then on M we have

<va, Y> = _<N7B(X7 Y)>a

where X, Y, and N are extended to R (and still denoted by X, Y, N).
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Mean curvature vector

The mean curvature vector H of M at p € M is ("the trace of the
second fundamental form")

n

i=1

where Xj, ..., Xj is an orthonormal basis of To,M.

v

In general, if v, vo, ..., v, is an arbitrary basis of T,M and g;; = (v, v}),
then
n .
Hp = Z gUB(Vi7 vj)7
ij=1

where (g”) is the inverse of the matrix (gj).
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Mean curvature vector

Note that Hp, € NpM.
Often H, is defined as ("the mean trace of the second fundamental

form")
1 n
Hp = E ZB()(h )(I)a
i=1

where Xj, ..., Xp is an orthonormal basis of To,M.

Definition
An immersed submanifold M c R™ is minimal if H = 0 on M.

July 6-10, 2015
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Scalar second fundamental form

Let M be an (m — 1)-dimensional submanifold of R™, i.e. a
hypersurface.

Definition

The scalar second fundamental form of M is the symmetric 2-tensor
defined by
h(X,Y) = (B(X,Y),N),

where N € N (M) is a smooth unit normal vector field.

Since M is of co-dimension 1, the unit normal vector N, spans N,M at
every point p € M. Hence

B(X, Y) = h(X, Y)N.

Note that the sign of h depends on the choice of N (versus —N).
We have the Gauss formula for hypersurfaces of R™:

VxY = VxY + h(X, Y)N.
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Weingarten map

Definition
The Weingarten map L: TM — TM is defined as

LX = —VxN.

For each p € M, the Weingarten map is a self-adjoint endomorphism
of TpM.

Since for every p € M, L: T,M — T,M is self-adjoint, it follows from
linear algebra that it has real eigenvalues «1, k2, ..., km—1 and that
there exists an orthonormal basis Eq, E», ..., E,_4 of TpM consisting
of eigenvectors

LE,‘ZH,‘E,’, i:1,...,m—1.

The eigenvalues of L are called the principal curvatures and the
corresponding eigenvectors are called principal directions.
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Weingarten map

Let k1,K2,...,6m—1 and Eq, Es, ..., En_1 be as above. By the
Weingarten equation

(N,B(E;, E))) = —(VEN, Ej) = (LE;, E}) = (riEj, E}) = ri.

Hence the mean curvature vector is given by

m—1

Hp = (; ki) N.

The Gaussian curvature of M at p is the determinant

K:detL:/€1I€2--'Hm_1.

llkka Holopainen (University of Helsinki) Minimal submanifolds July 6-10, 2015



Riemannian curvature tensor

The Riemannian curvature tensor of M is the mapping
R: T(M)x T(M)x T(M)— T(M)
defined by

R(X,Y)Z = VxVyZ — VyVxZ — VixyZ.

Note that the Riemannian curvature tensor R of R” vanishes
identically.
The sectional curvature of a 2-dimensional subspace P C T,M
spanned by vectors v, w € Tp,M is defined by

(RM(v, w)w, v)

KM(P) =

where
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Riemannian curvature tensor

v AW = /IVEIWE — (v, )2

is the area of the parallelogram spanned by v and w.
It satisfies the Gauss equation

KM(P)|lv A w|? — K(P)|v A w|? = (B(v, v),B(w, w)) — | B(v, w)|?.
=0

Here K(P) denotes the sectional curvature of P with respect to the
ambient space which in our setting is R™ and therefore K = 0.
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Riemannian curvature tensor

Let kq,k2,...,km_1 and Eq, Eo, ..., Ey_1 be as above. By the
Weingarten equation

(N,B(E;, E))) = —(?E,.N, E;) = (LE;, Ej) = (kiE;j, Ej) = kidjj.
Hence
B(E;, Ej) = K,'(s,'jN
and therefore
K(P) = (B(E;, E;),B(E}, E})) — | B(E;, Ej)|? = ki
=0

for a 2-dimensional subspace P = span(E;, E;) C ToM.
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Let M c R™ be an n-dimensional smooth submanifold. Let f: M — R
be a C'-function, p € M, and X € T,M. Then
Xf = (fo~)(0),

where v: ] — ¢,e[— M is any C'-path, with v(0) = p and 4o = X.
The gradient of f is defined as

n

VMi(p) = (Xif)X;,
i=1

where {X;}!_; is an orthonormal basis of T,M.
In particular, if f is a C'-function in a neighborhood (in R™) of p, then

VMf(p) = (VH(p)) .
where

Vi(p) = aif(p)o;
i=1
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is the standard gradient (in R™) of f.

Given achart p: U — R", U C M, and the corresponding local
parametrization F = o~ ': oU — U we can write VMf in U as
n
- Of OF
M i
v I_; g Ox! OxI’

where g/: U— R, 2L: U—R,and 25: U — TM are defined as

of Ifop™

W(’D) = T(@(P)),
oF OF; OFm
220 = (S AP G2 (elp) ) € Ta,

9ii(p) = gf,-(p) : g)f,-(p),

and (g”) is the inverse of the matrix (gj).
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Divergence

The divergence (on M) of a C'-smooth vector field V (not necessarily
tangential) at p € M is defined as follows.

Let {Xi,Xo,..., Xn, Yni1,..., Ym} be an orthonormal basis of R” such
that { X1, Xz, ..., Xy} forms a basis of T,M. We write

V= va+ Z V'Y,

i=n+1
Then

n
div V(p) = > (VX V, X)) Z< (Tx V)"
i=1

Thus for a smooth vector field V e T(M), divM V(p) is the trace of the
linear map ToM — ToM, v — V, V. In local coordinates,

. 1 & 9 :
divM v = 7 > 57 (VOV'), g = det(gy).
i=1
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The Laplacian of a C?-function f € C?(M) is defined as

aMr = gy = 5™ 2 agi O
\Fgl_l_:1 ox’ oxI’”

In normal coordinates at p, we have the simple formula

AMf(p) = > 9i0¢f(p)-
i=
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Jacobi formula

Lemma [Jacobi formula]

Let a;: RY — R be smooth functions, with i,j = 1,..., n, and let
A = (aj). Then in the open set {x € R": detA > 0} we have

0 0A , 4
WlogdetA_tr<WA )

fore=1,...,d.

Writing A~! = (&), the right hand side reads as

dajj
Z 8Xe all

7] 1

and so

6detA _de tAZ 8a,ja/, B
7] 1
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Mean curvature and Laplacian

Suppose that M c R is a smooth n-dimensional submanifold and let
po:U—-QCR"bea ohart defined in an open set U ¢ M.

Furthermore, let F = ¢~ ': Q — U be local parametrization. As before,
F induces a frame {axj

(Zf/)p = (gg(w(l?)) %i’,"( (p))> e ToM,

Now

S _OF _ _0°F
VoF 57 = axioxi>

_ ?F 0°F,
OF 1 m
(V OF oxi ) <8x"8x/""’6x"6x/> (#(p) € RT.
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Mean curvature and Laplacian

Hence the mean curvature vector Hy, at p € U is given by

n
Ho=2_ o' (P)B(5 5a)

ij=1
n . _ 1
=>_.9'(p) (VaF. S‘F)
i,j=1 oxt—/p

1
no 2

ij=1

Next we express the mean curvature vector as the Laplacian (on M) of
the inclusion 7: M — R™.
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Mean curvature and Laplacian

Suppose that M ¢ R™ is a smooth n-dimensional submanifold and let
m: M—R" 7 =(m,...,7m), be the inclusion. Then

Hp = AV7(p) = (AM7r1 e AMTrm) (p)

forp e M.

Proof. Fix pe Mand let ¢: U — Q Cc R"” be a chart at p and
0 ,
W, I:1,...,n,

the coordinate frame associated to the chart (U, ). Furthermore, let
F = ¢~ 1: Q — U be the corresponding (local) parametrization.
Then, in fact,

0 0 OF;
(7). 7= g @2 (400) = et
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Mean curvature and Laplacian

We claim that AMz(p) € NpyM, that is

AMr(p) - 25 = AMr(p) - 2% =
foralk=1,...,n
We compute by using the Jacobi formula and the symmetry of (gj)

AMr(p) - 2z = (\;g i oxi <‘Fg”g;)) E?:k

_in(\/‘i/ai ony S gir. On
V9 A= ox 99" 9xi “axk) ~ g oxI Oxioxk
ij=1 N—— ij=1

=0jk

11221 X' ( gg”g,k) Z gU 8x/ 8x’8xk
6Ik
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Mean curvature and Laplacian

_ 1 ovg Z Om
Vg Oxk oxl 6x’6xk

116’9_2": jor  Pm
oOxi Oxioxk

\ng\f oxk

1<~ ; 0 y0r o noor 8
2 I,; g axk <6x' ax/> 2 9 oxi Oxioxk

.

n

1 i P or  9n  on I jom &Pr
T2 .Zg (8x"axk oxi T axioxk o —”Z_;g oxI - OxToxk
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Mean curvature and Laplacian

Thus AMr(p) € NpM since (£ k)p, k=1,...,n, forms a basis of T,M.
Furthermore,

Z 8x’<

8xl >

Z (fg’/) ox/ + Z gij

ox! 8xl

eTpM
On the other hand, since AMx(p) € N,M, we have
AMx(p) = (aMn(p)) "
n

(s X o (vee) 55) + (20 )

Ij—

=0
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Mean curvature and Laplacian

_(N= i P
B <Z 8x’8x/') P
i,j=1
as claimed.
We have proved:
AMr(p) = Hp
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First variation formula

Let Q@ c R" be open, f: Q — R™ an immersion, and M = fQ. Every
x € Q has a neighborhood U C Q such that f|Q2 is an embedding.
Define the "tangent space” T¢,)M and the normal space Ny, M as
Tf(X)M = Tf(X)U = df(X)Rn and Nf(X)M = Nf(X)U

Let ¢ € C5°(Q2) be a real-valued function and let N: @ — S™~1 be
smooth such that Ny = N(x) € Ny, )M Vx € Q.

Define a variation of M (more precisely, a variation of the immersion
f: Q — R™) with compact support as

F:Qx]—e,e[=R™ F(x,t) = f(x)+ to(x)Nx,

with ¢ > 0 small enough.
Let {Ox,, Ox,, - - -, Ox,, Ot} be the standard basis of R™1 and define
vector fields Fy, and F; along F by setting
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First variation formula

Fx.(x,t) = dF(x,t)0x, and Fi(x,t)=dF(x,t)0;.
Then F,, and F; commute because

[Fyx;, Ft] = dF [0x,, 0¢] = 0.
=0

Note that Fy(x,0) = dF(x,0)d; = ¢(x)Ny € Ni M.
Define

gii(x, t) = (Fx(x, 1), Fx(x,t)) and g(x,t) = detg;(x,1).

Then the volume of M; = F(Q,t) is

Vol M; = / Vv a(x, t)dx.
Q
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First variation formula

Hence

d 0
aVoI Mit—o = A ﬁx/g(x, t)“:de

1 1 0
= 2/Qmmg(x7 1)) =X
3 [Vax0 Y g0 o

= =0

L[ VAT g0 E Ftet o

i=1 =

- ;/Q V9(x,0) Z 9'(x,0) ((VEFx,, ij> + <€F:FX,-’ F)) (x,0)dx

ij=1

= [ Vax:0) 3 gh(x.0)(V 5P Fy)(x,0)cix

i?j:1
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First variation formula

_/Q\/MZQU(X,OX?FXIFI, Fx)(x,0)adx

ij=1

- /Q VIr0) S gh(x,0)(Tr, (()Nx), F,)(x, 0)dlx

ij=1

=~ [ Va(x0) 3 o(x,0)(B(F. ). X)) (x.0)ce

ij=1

= —/Q\/M<Hf(x)7‘P(X)NX>(X70)dX

- —/M(H, V).
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First variation formula

Above Hyx) denotes the mean curvature vector at f(x) of fU, with f{U
an embedding. Moreover,
- [ )
M

is a shorthand notation in case the immersion f: Q — R™ is non-
injective, whereas Vp, = o(f~! (P))N;-1(p) for an injective immersion f.
Conclusion: If H =0, then M = M, is a critical point for the volume
functional. Otherwise, "deforming"” M into the direction of Hp
decreases the volume.
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Riemannian manifold

Let M be an m-dimensional C>°-manifold, T,M the tangent space at
x € M, and
TM=|| Tk
xelM

the tangent bundle. [Note: T is a 2m-dimensional smooth manifold.]
A Riemannian metric (tensor) on M is a 2-covariant tensor field

g € T2(M) that is symmetric (i.e. (X, Y) = g(Y, X)) and positive
definite (i.e. §(Xx, Xx) > 0 if Xy # 0). A smooth manifold M with a
given Riemannian metric g is called a Riemannian manifold (M, 9).

A Riemannian metric thus defines an inner product on each T,M,
written as (v, w) = (v, w), = g(v, w) for v, w € T, M.

The inner product varies smoothly in x in the sense that for every

X, Y € T(M), the function M — R, x — §(Xx, Yx), is C.
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Riemannian connection

Given a Riemannian manifold (M, §), there exists a unique mapping

V:T(M) x T(M) — T(M), V(X,Y)=VxY,

called the Riemannian (or the Levi-Civita) connection on (M, §)
satisfying the properties 1.-5. below.

1. VxYis C>®-linearin X: for every functions f, g € C>*(M) and
vector fields X, Y,V € T(M)

VixtgrV = fVxV +gVyV;
2. VxYisR-linearin Y: forevery a,be R, X, Y,V e T(M)

Vx(aY +bV)=aVxY +bVxV;
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Riemannian connection

3. V satisfies the Leibniz rule: for every f € C®°(M), X, Y € T(M)
Vx(fY) = fUxY + (XF)Y;
4. V is torsion-free: for every X, Y e T(M)
VxY = VyX=[X,Y]

5. V is compatible with the Riemannian metric (-, -) of M: for every
X,Y,Z e T(i)

X(Y,Z)=(VxY,Z)+ (Y,Vx2Z).
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Riemannian curvature tensor and sectional curvature

The Riemannian curvature on M is the tensor field
R: T(M) x T(M) x T(M)x — T(M)
defined by

R(X,Y)Z =VxVyZ - VyVxZ - VixnZ.
The sectional curvature of a 2-dimensional subspace P ¢ T,M
spanned by vectors v, w € TpoM is defined by

(R(v,w)w, V)

K(P) = v Aw?

)

where

v aw] =/ IVRIWE — (v, w)2

is the area of the parallelogram spanned by v and w.
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Ricci curvature

The Ricci curvature on M is the tensor field defined by

F%(x,y) =tr(z— R(z,x)y) = the trace of the linear map z — R(z, x)y.
Hence if ey,..., ey is an orthonormal basis of TpA7I, then

m m
Ric(x,y) = > (R(e;,x)y.e)=> (R(x, e)e;y).
i=1 i=1
We set Ric(x) = Ric(x, x). If |x| = 1, Ric(x) is called the Ricci
curvature in the direction x. }
Henceif [x| =1and ey,...,en_1 € TpM such that x, eq,...,en_1is
an orthonormal basis of T,M, we get

m—1 m—1
Ric(x) = (R(x,x)x,x) + > _(R(x,e)er.x) = > K(Py),
-0 i=1 i=1

where P; C Tpl\~/7 is the plane spanned by x and e;.
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Riemannian structure of submanifolds of M.

Let M be an n-dimensional smooth submanifold of (M, §). Then g
induces a Riemannian metric g on M: for every p € M and for every
vectors v, w € TpM,
a(v,w) = (v,w) = g(v,w).
The Riemannian connection V,
= N T
(VxY)p = (VgY),.
the second fundamental form B,
~ ~\-L
B(X,Y) = (vxv) :
the mean curvature vector
n
Hp = Z B()(h )(I)a
i=1
with Xi, ..., X an orthonormal basis of Tp,M,
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Riemannian structure of submanifolds of M.

and the Riemannian curvature tensor
R(X,Y)Z =VxVyZ-VyVxZ— V[X7Y]Z.

are defined as in the case of submanifolds of R™.
As in the Euclidean setting, we define:

Definition
A submanifold M c M is minimal if H = 0 on M.
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Minimal graph equation

Let M be an n-dimensional Riemannian manifold, 2 ¢ M a bounded
open set, and u: Q — R a C?-function. The graph of u,
T={(xu(x): x€Ql c MxR:=M,

is an n-dimensional (C2?-smooth) submanifold of M x R. [Note:
M = M x R equipped with the product structure.]
Its (n-dim. measure) volume is given by

A(T) = /Q J1 + [Vuzdv.

Here Vu is the gradient of u is defined by
(Vu, X) = Xu

for all vector fields X. Thus
n

Vu=) (Xiu)X;
i=1

if X1,..., X, are orthonormal.

llkka Holopainen (University of Helsinki) Minimal submanifolds July 6-10, 2015



Minimal graph equation

As in the Euclidean case, a function u € C?(Q) is a critical point of the
area (or volume) functional if

o Vu _
M[u] := div (W) 0. (3)

Here div is the divergence defined by
divX =1r (& — VeX)

for C'-smooth vector fields X. Again, if u'is a solution of (3) in ©, its
graph ¥, is a minimal submanifold of M = M x R.
Furthermore, the function ("height function") ¥, — R,

(x, u(x)) = u(x),
is @ harmonic function on X, and the mapping ("vertical projection")
>, — M,

(x,u(x)) — x,

is @ harmonic mapping on X,,.
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Dirichlet problem

Next | will explain the idea of a proof of the following theorem:

Suppose that Q € M is a smooth relatively compact open set whose
boundary has positive mean curvature with respect to inwards pointing
unit normal field. Then for each +» € C2%(Q) there exists a unique

u € C=(Q) N C%(Q) that solves the minimal graph equation (3) in Q
with boundary values u|0Q = ¥|01.

Since 02 ¢ M is a hypersurface (co-dimension 1), "positive mean
curvature with respect to inwards pointing unit normal field" just means
that the mean curvature vector H, # 0 of 0L is parallel to the inwards
pointing unit normal vector at every p € 052.
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(Nonlinear) continuity method

Jurgen Jost: Partial Differential Equations:

"Connect what you want to know to what you know already.

This is the continuity method. The idea is that, if you can connect your
given problem continuously with another, simpler, problem that you can
already solve, then you can also solve the former. Of course, the
continuation of solutions requires careful control."

Let ¢ € C>*(Q) be given. Denote

A= {te[0,1]: Ju; € C*>*(Q) such that M[u] = 0in Q and u;|0Q = ti)}.

The idea is simple:
Prove that A # () is both open and closed in [0, 1], hence A = [0, 1]
and, in particular, there exists a solution u, with u|0Q = ¢|0.
@ A £ since 0 € A. (The constant function ug = 0 is a solution.)
@ Ais open. This is a consequence of the implicit function theorem.
© Ais closed. This follows from a priori estimates for (smooth)
solutions together with Schauder estimates.
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Implicit function theorem

Recall:

Let E, F be Banach spaces, U C E open, and xp € U. A function
f: U — F is (Fréchet) differentiable at x if there exists A € L(E, F) (=
continuous linear), called the differential of f at xg, such that

f(xo + h) = f(xo) + Ah+o(h) as h— 0.

| \

Implicit function theorem

Let E, F, G be Banach spaces, Q c E x F open, f € C' (2,G), and
(Xo,yo) € Q, with f(Xo,yo) = 0. Let Dgf(Xo,yo) S L(F, G) be the
differential at xp of the map y — f(xo, y). If Dof(X0,¥0): F — Gis a
linear isomorphism, then there exist neighborhoods U > xp, V 3 o,
and a differentiable map g: U — V such that f(x, g(x)) = 0 and
f(x,y) =0ifand only if y = g(x), for all (x,y) € U x V.
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Implicit function theorem

Let Q € M be a relatively compact open set. Denote

[u]a;Q:sup{‘u(X)_u(y)‘:x,yeQ,x;éy}, O<a<,

d(x,y)~

|DXulo.o = sup sup |D’u|, k=0,1,2,...,

[Bl=k ©
[D¥u].q = sup[DPu]a.q,

|Bl=k

k .

ullor@y = D _ID'ulo,

=0

1ullro(@) = lIUllray + [D*Ulaa-

The Hélder spaces C&*(Q) c C*(Q) c CX(Q)), k=0,1,2,..., are
Banach spaces equipped with norms ||-| cr.o(q)-
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To prove that the set
A= {te0,1]: Ju; € C*>*(Q) such that M[u] = 0in Q and t;|0Q = ti)}.
isopenin [0, 1], let f{y € A. Need to show that (fy —¢,fp +¢)N[0,1] C A

for some € > 0.

We apply the implicit function theorem to the mapping
f: R x C(Q) — C(Q),

V(u+ ty)
V1+[V(u+ )2

Note that t € Aif and only if f(t, v;) = 0 for some v; € Cg’o‘(ﬁ) since

f(t, u) = M[u + ty] = div

(vi + t)|0Q = 1|0 and  M[v; + ty] = f(t, v¢) =0,

and so u; = v; + ty is the desired solution.
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Thus let (t, vo) € A x C2*({2). Then f(to, vo) = 0. Furthermore, f is C'
and Dxf(fy, vo): C*(Q) — C*(Q) is a linear isomorphism by the
theory of uniformly elliptic linear operators (maximum principles,
Schauder estimates, existence and regularity of solutions to Dirichlet
problem; see e.g. Gilbarg-Trudinger).

The implicit function theorem then implies that A is open in [0, 1].
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To prove that Ais closed, let t; € A, with t; — t € [0, 1]. Need to show
that t € A.

Let u; € C%%(Q) be the solution M[u;] = 0, with u;|0Q = t)|0Q.

It suffices to show that

there exists a subsequence (u;) such that u; — u € C%(Q) in C?(Q) }
norm

since then
uloQ = lim ;|02 = lim |02 = t|0Q
I—00 I—00

and
Ml = ftu ) = £ Jim (1.0~ )
lim f(t;, uj — ti) = lim MJu;] = 0.

lim
I—00
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The existence of such a subsequence follows from a priori estimates

sup|uj| <c and sup|Vy <c,
Q Q
and Schauder estimates

Uil cev(@y < ©

with constant ¢ < oo independent of /.
The estimate

suplui| < ¢
Q

follows from the maximum principle (¢ is a bounded function and
constant functions are solutions).

Next we discuss about (interior and boundary) gradient estimates

sup |Vuj| <c.
Q
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Boundary gradient estimate: |dea

Suppose that Q2 € M is a smooth relatively compact open set whose
boundary has positive mean curvature with respect to inwards pointing
unit normal field. We say that Q is strictly mean convex.

Let v € C>*(Q) and consider functions w+, w—: Q — R,

w'(x) = tih(x) +¢(d(x)) and w(x) = tigh(x) — p(d(x)),
where t; € A, d(x) = dist(x,9Q) = min{d(x, y): y € 02}, and
©(s) = c1log(1 + c28). (4)
Denote
Qs ={xeQ:d(x)<s} and TIs={xeQ: d(x)=s}

If x € I's, for s < sy small enough, —Ad(x) is the sum of the principal
curvatures of I's with respect to inwards pointing unit normal.

Since Q is strictly mean convex, we conclude that Ad(x) < 0 for

x € Qs for s < sy small enough.
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Boundary gradient estimate: |dea

By choosing constants ¢y, ¢, in (4) properly, we conclude that wt is a
supersolution and w~ is a subsolution. Furthermore, w*|0Q = u;|0Q,
and

wt >supu;, w <infu; onTy,.
N oQ

It follows that
sup |Vu;| < max {sup|Vwﬂ,sup|Vw\} <Cc< oo
09 09 09

for the solution u; € C?(Q), with 1;|0Q = ti|O9.

llkka Holopainen (University of Helsinki) Minimal submanifolds July 6-10, 2015



Interior gradient estimates

| will sketch the proof(s) of the following gradient estimate(s):

Lemma [Rosenberg-Schulze-Spruck]

Let Q € M be a relatively compact open set and let u € C?(Q) N C'(Q)
be a solution to the minimal graph equation M[u] = 0 in Q. Then

sup4/1+ Vu2<supe “-sup(e“ 1+ VUZ),
\/ | | 5 \/ | |
where

o? = sup{max{—Ric(v,7),0}: y € ToM, |y| =1, p€ Q}.
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Interior gradient estimates

For the next lemma, suppose that 2 € M is a relatively compact open
set, x € Q, and B(x, p) C Q, where p < inj(x), the injectivity radius of
M at x.

Lemma [Spruck]

Let u € C3(R) be a non-negative solution of the mean curvature
equation

, Vu(y) B
W AN V)

in Q. Then

1+ |Vu(x)2 < 32max{1, (u(x)/p)?} e!6Cux) g!6(u(x)/p)*

for a constant C independent of u, but depending on the C'-norm of
H, on a lower bound for the sectional curvatures of M, and on an upper
bound for Ad? on Q.

v
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"Bochner-type" formula

Both lemmas are proved by applying maximum principle to a
subsolution of an elliptic PDE. For that purpose, we need the following
"Bochner-type" formula.

Theorem

Let M™ be a Riemannian manifold and let N = M™ x R be equipped
with the product structure. Let E., 1 be the unit vector field such that

0
Em+1 (pa t) = a V(p, t) eN.

Let ¥ ¢ N be an m-dimensional (smooth) hypersurface with induced

structure, n a smooth unit normal vector field to ¥, and define

f(x) = (nx, Ems1(x)) for x € X. Then

Af = A%f = —(ET |, Vh) - (F%(n) n HBH?) f,
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"Bochner-type" formula

where h = (H,n) is the scalar mean curvature of * (w.r.t. n),

Vh = VEhits gradient, ||B||2 the squared norm of B, and Ric the Ricci
curvature on N.

v

o
IB? = Z IB(Ej, E))] Z
ij=1 i=1
where Eq, ..., Epis a (local) orthonormal frame on ¥ and «;’s are

the principal curvatures.
Q f(x) = (nx, Emy1(x)) is the "vertical (R-)component" of 7.
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"Bochner-type" formula

Corollary

Suppose that ¥ has a constant mean curvature. Then

Af = — (F”zi“c(n) + HBHZ) f.

v

If X is the graph of a solution u: Q — R of the minimal graph equation
in Q2 Cc M, then h=0 and

1

1+ [VMy|2’
NCER LT
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Proof of the "Bochner-type" formula

Fix x € X and let E{(x), ..., En(x) be an orthonormal basis of 7%~
consisting of the eigenvectors of the Weingarten map L: Ty~ — Tx%,
with eigenvalues «;. Extend E¢(x), ..., Em(x) to a geodesic frame
Ei,..., Epinaneighborhood of x in ¥ (thus (Vg Ej)x = 0).

Then

Af(X) = i E,E,f(X)
i=1

We compute at x:
m
Af(x) = Z EiEif = Z EiEi(n, Em+1)
i=1 i

= Z Ei((Ven, Emi1) + (0. VEEmi1))
,. —
= ZWE,@E,U, Emi1)-

]
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Proof of the "Bochner-type" formula

Write
m+1 Z ejE + f777 f= <777 Em+1>
j=1
Then
Af(x) = Z<€E;€Eﬂ7, Emi1)
i
= &(VEVEN E)+ Y HVEVEn).
ij i
We have at x:
(Ve Ven, E)) = (R(Ej, E))Ei,n) — Ej(VEEi,n) (5)
and
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Proof of the "Bochner-type" formula

(VEVENn) = —(VE (LE),n)
~——
eTx

= —(VE(LE).n) —(VE(LE)) " n)
———

€T
| ——
=0

< (EleE) 77> <@ ,-777LEi>

—(LE;,LE}) = —K2.
So,
Af(x) =Y (VEVEN, Emit)

=>_ & (R(E. ENErm) — EXVeErm) — 1 #f
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Proof of the "Bochner-type" formula

- Z ( m+1 f777 Ei)Ei777> - (Z ejE_/) <vE,Eiﬂ7>) - fHBHZ
J
—Z Emi1, E)Eim) =1 (R, E)E

N~

=Ric(Ems1,1)=0 =Ric(n)

_ Z (Z ejEj> (Vg Ei,m) — f||B|?
i J

= —fRic(y (Z e; ) Z( VE,.E,-,n>+<(?E,E,-)L7n>) — f[IB||?

I eTE —B(E,E)
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Proof of the "Bochner-type" formula

— _fRic(n (Z 6 ) ) —f||B|2
:h

-
*Em+1

= —fRic(n) — (Egs1, V) — f|B].

We are left with the Proof of (5):

<?E,-?E,-77, Ej> = <I_q(Eja Ei)Ei7n> - Ej<?E,EIa77>
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Proof of the "Bochner-type" formula

First we note that
Ei(VEgEi,n) = (VEVEE,n) + (VEE, VEN)
——
S
=(VgVEgEi,n) + (VgEi, Vgn)
——
=0at x
= <VE]-VE,-E/‘777>-
Thus
(VeVen, E) = (R(Ej, E)Ei,n) — E{VEEin)
< (VeVen, E) = (VEVEE,n) — (VEVEEn)
W[ e.5] Einn) — (VEVEEL,) — (VEE, VEND)

v SN~~~
=0at x €T
—_———

=(VE, E,-ﬁEjm:o

=0
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Proof of the "Bochner-type" formula

< (VgVen, E) = —(VeVEgEin) (6)
Remains to verify (6).
Since (E;,n) = 0 (along ¥), we have E;(E;,n) = 0.

Hence
0= (VgEj,n) + (E,Ven)
—
(—LEj,E))
along %.
Therefore
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Proof of the "Bochner-type" formula

= (VEVEEin) + (VEE+(VgE) ", -LE)
—— ~—~—
=0at x eTx
- J_ - -
+(VEE; —i—(VE,Ej) ,—LEj) +(Ej,VEVEM)
=0atx eTx

= <vE,ijEi’77> + <E/7 vEiv’fﬂﬁ

So, we have proved:
AT = —(Ep.y, Vh) — (Ric(n) + [BJ2) £,

where f = (n, E;i1).
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Proof of Rosenberg-Schulze-Spruck estimate

Let’s recall:

Lemma [Rosenberg-Schulze-Spruck]

Let Q € M be a relatively compact open set and let u € C?(Q) N C'(Q)
be a solution to the minimal graph equation M[u] = 0 in Q. Then

sup+/1+|Vul2 <supe Y-su (e"“ 1-|—Vu2), 7
Q|0\/ Vul ze Up 1+ [Vl (7)

where

o? = sup{max{—Ric(7,7),0}: y € oM, |y| =1, p€ Q}.

Idea of the proof
Write the Riemannian metric of M (locally) as

ds? = ojdx'dx’  (Einstein summation).
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Proof of Rosenberg-Schulze-Spruck estimate

Corresponding local coordinate frame on ¥ = ¥, is then given by

Xi=0;+ U0y, u= %, u(x,t) :=u(x), x € Q.
I

Furthermore, the unit normal field (to ¥) can be written as

1 . o
n= W(—u’a,- + 8t), u = UUU]', W :.=/1+ ‘VU|2,

So, the induced Riem. metric (from M x R) on ¥ is
dst = gydr'dr!, dr'(X)) = gy,
gij = (Xi, Xj) = oy + uju,
u'd
wz"
The minimal graph equation in nondivergence form is then

gi=ol—

1 . K L
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Proof of Rosenberg-Schulze-Spruck estimate

Recall the "Bochner" formula for H = 0.
1 ~ 1
() _ (R 2\
8% () = = (Riotn) + [B12) 3

N M
Ric(n) = (1= W2) Ric"(3), 7= (8)
where n" is the "TM-component" of n € TM & R. [Note: If  is vertical
(n™ = 0), then W = 1 and (8) holds trivially.]
Using (8), the standard formula

We have

A(gop) =(d op)hp+ (9" o)Vl
and the "Bochner" formula, we get

2|VEW|?

W=
AW = W

+ W|B|]2 + W(1 — W—2)RicM(4).
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Proof of Rosenberg-Schulze-Spruck estimate

Define (on Q x R) a function h(x) = ¢(x) W(x), depending only on
x-variable of points (x, t) € Q x R, with

p=e" a>0,
and an elliptic second order operator

XWXh ATh— 2g’/W

Lh:= A*h—2g7
= <AZW - W|VZ W\z) + WAy

=W (A% +¢ (B2 + (1 - W2) RicY(n)) ) .

Since
A):(p — AZ (eQU) — aeau AZu+a2GQU|vZu|2 — a26aU|vZU|2
~—
=0
— a26au(1 _ W_Z),
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Proof of Rosenberg-Schulze-Spruck estimate

we get
Lh=h <||B||2 + (1 - W—2) <a2 + RicM(y))> .

Choosing « as in the claim, i.e.

a2 = sup{max{— Ric(fV?V)vO}: e TPM7 |7| =1, pe Q}a
we obtain
Lh>0, ie. h=e*W isa subsolution.

By the Hopf maximum principle

sup e*YW = sup e*“W,
Q 09

and the estimate (7) follows.
The proof of the gradient estimate due to Spruck follows similar lines.
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