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Area functional

Suppose that u : Ω̄→ R is a C2-function, where Ω ⊂ R2 is a bounded
open set. Denote by Σ = Σu ⊂ R3 its graph

Σ =
{(

x , y ,u(x , y)
)

: (x , y) ∈ Ω̄
}
.

It is a 2-dimensional submanifold of R3 and the tangent space (plane)
TpΣ at p = (x , y ,u(x , y)) ∈ Σ is spanned by vectors (1,0,ux ) and
(0,1,uy ), where ux and uy denote the partial derivatives of u with
respect to x and y , respectively.
The absolute value ∣∣(1,0,ux )× (0,1,uy )

∣∣
is the area of the parallelogram spanned by (1,0,ux ) and (0,1,uy ),
and so the area of the graph is
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Area functional

A(Σ) =

∫
Ω
|(1,0,ux )× (0,1,uy )| =

∫
Ω

√
1 + u2

x + u2
y

=

∫
Ω

√
1 + |∇u|2.

Let η ∈ C2
0(Ω). Then the graphs of u and u + tη, t ∈ R, have the same

"boundary” ∂Σ = {(x , y ,u(x , y) : (x , y) ∈ ∂Ω} and

A(Σu+tη) =

∫
Ω

√
1 + |∇u + t∇η|2.

Suppose that Σu has the minimal area among all graphs with the same
boundary ∂Σu. Then, of course,

d
dt
A(Σu+tη)|t=0 = 0.
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Minimal graph equation

Differentiating with respect to t and using Green’s formula we obtain

d
dt
A(Γu+tη)|t=0 =

d
dt

∫
Ω

√
1 + |∇u + t∇η|2

|t=0

=

∫
Ω

d
dt

√
1 + |∇u + t∇η|2

|t=0

=

∫
Ω

1
2

(1 + |∇u|2)−1/2 d
dt
〈
∇(u + tη),∇(u + tη)

〉
|t=0

=

∫
Ω

〈∇u,∇η〉√
1 + |∇u|2

= −
∫

Ω
η div

(
∇u√

1 + |∇u|2

)
= 0.
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Minimal graph equation

We say that u ∈ C2(Ω) is a critical point for the area functional if

d
dt
A(Σu+tη)|t=0 = 0 ∀η ∈ C2

0(Ω).

In that case, since ∫
Ω
η div

(
∇u√

1 + |∇u|2

)
= 0

for all η ∈ C2
0(Ω), we conclude that u ∈ C2(Ω) is a critical point if and

only if it satisfies the minimal graph equation (or the mean curvature
equation)

div

(
∇u√

1 + |∇u|2

)
= 0.
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Minimal graph equation

In particular, if u ∈ C2(Ω) minimizes the area (of graphs) among
smooth functions with the same values on ∂Ω, it is a solution to the
minimal graph equation.
Conversely, a critical point u for the area functional minimizes the area
among all (smooth) surfaces inside the cylinder Ω× R with the same
boundary ∂Σu.
For this and later purposes we note that the unit vector

N =
(1,0,ux )× (0,1,uy )

|(1,0,ux )× (0,1,uy )|
=

(−ux ,−uy ,1)√
1 + |∇u|2

=
(
∈R2

−∇u,1)√
1 + |∇u|2

is orthogonal to both (1,0,ux ) and (0,1,uy ), and therefore it is the
(upwards pointing) unit normal to Σu.

Ilkka Holopainen (University of Helsinki) Minimal submanifolds July 6-10, 2015 7 / 84



Minimal graph equation

We define a 2-form ω in the cylinder Ω× R by setting

ω(X ,Y ) = det(X ,Y ,N)

for vectors X ,Y ∈ R3.
Note that ω is the contraction by N of the standard volume form
ω̃ = dx ∧ dy ∧ dz, i.e. ω = Ny ω̃ = iN ω̃. Hence ω is the volume (area)
form of Σu.
Since ω = a dx ∧ dy + b dx ∧ dz + c dy ∧ dz and

a = ω(
∂

∂x
,
∂

∂y
) = 1/

√
1 + |∇u|2,

b = ω(
∂

∂x
,
∂

∂z
) = uy/

√
1 + |∇u|2,

c = ω(
∂

∂y
,
∂

∂z
) = −ux/

√
1 + |∇u|2,
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Minimal graph equation

we see that

ω =
dx ∧ dy − uxdy ∧ dz − uydz ∧ dx√

1 + |∇u|2
.

Furthermore, since u satisfies the minimal graph equation, we obtain

dω =

{
∂

∂x

(
−ux√

1 + |∇u|2

)
+

∂

∂y

(
−uy√

1 + |∇u|2

)}
dx ∧ dy ∧ dz

= 0.

Thus ω is a closed 2-form in the cylinder Ω× R.
Let then Σ be another (smooth) surface (not necessarily a graph) in
Ω× R with the same boundary than Σu (∂Σu = ∂Σ). Then Σ and Σu
bound an open set U ⊂ R3 where dω = 0. The set U may have several
components but applying Stokes’ theorem in each component we
obtain ∫

Σu

ω =

∫
Σ
ω.
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Minimal graph equation

On the other hand, by definition |ω(X ,Y )| = |det(X ,Y ,N)| is the
volume of the polyhedron spanned by vectors X ,Y , and N. In
particular, for any unit vectors X and Y ,

|ω(X ,Y )| ≤ 1,

with the equality if and only if X ,Y , and N are orthonormal. Hence

A(Σu) =

∫
Σu

ω =

∫
Σ
ω ≤ A(Σ). (1)

This shows that Σu minimizes the area among such surfaces (inside
Ω× R).
If Ω is convex, then Σu is area-minimizing among all surfaces Σ ⊂ R3

with ∂Σ = ∂Σu. To see this, let Σ be such a surface and let
P : R3 → Ω× R be the nearest point projection. The convexity of Ω
implies that P is 1-Lipschitz map that is equal to the identity on Ω× R.
In particular, A(PΣ) ≤ A(Σ). Applying (1) to PΣ we obtain

A(Σu) ≤ A(PΣ) ≤ A(Σ).
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Minimal graph equation

Remark
All of the above holds in higher dimensions, too.

Suppose that Ω ⊂ Rn is a bounded open set and u : Ω̄→ R a smooth
function. Then the area (n-dimensional measure) of the graph

Σu =
{(

x ,u(x)
)

: x ∈ Ω
}
⊂ Ω× R

is:
A(u) =

∫
Ω

√
1 + |∇u|2dx .

Remark
If u ∈ C2(Ω) ∩ C(Ω̄) is a solution to the minimal graph equation, its
graph Σu need not minimize the area among all hypersurfaces with the
same boundary ∂Σu. (Hardt, Lau, Lin: Non-minimality of minimal
graphs, Indiana Univ. Math. J. 36 (1987), 849-855)
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Standard connection of Rm

We denote by

∂i =
∂

∂xi
, i = 1, . . . ,m,

the standard basis of Rm. Thus these vectors are orthonormal with
respect to the standard inner product 〈·, ·〉.
A vector field defined on an open set Ω ⊂ Rm is a mapping V : Ω→ Rm

which we write as

Vp = V (p) =
m∑

i=1

v i(p)∂i ,

where v i : Ω→ R, i = 1, . . . ,m, are (component) functions.
Vector fields act on smooth functions f as

Vf =
m∑

i=1

v i(p)∂i f , ∂i f =
∂f
∂xi

.
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Standard connection of Rm

Thus

Vpf := Vf (p) =
m∑

i=1

v i(p)∂i f (p) = 〈Vp,∇f (p)〉

is the directional derivative of f along vector Vp.

Definition
Let X and V be vector fields such that V is smooth (i.e. the component
functions v i are smooth). Then the covariant derivative of V in the
direction Xp is the vector(

∇̄X V
)

p = (Xpv1,Xpv2, . . . ,Xpvm) ∈ Rm

and ∇̄X V is the vector field p 7→
(
∇̄X V

)
p.

We denote by T (Ω) the set of all smooth vector fields on Ω ⊂ Rm.
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Standard connection of Rm

Definition
The mapping

∇̄ : T (Ω)× T (Ω)→ T (Ω), ∇̄(X ,Y ) = ∇̄X Y ,

is called the Levi-Civita connection on Ω. We also call it the standard
connection on Ω ⊂ Rm.

The standard connection has the following properties:
1. ∇̄X Y is C∞-linear in X : for every functions f ,g ∈ C∞(Ω) and

vector fields X ,Y ,V ∈ T (Ω)

∇̄fX+gY V = f ∇̄X V + g∇̄Y V ;

2. ∇̄X Y is R-linear in Y : for every a,b ∈ R,X ,Y ,V ∈ T (Ω)

∇̄X (aY + bV ) = a∇̄X Y + b∇̄X V ;
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Standard connection of Rm

3. ∇̄ satisfies the Leibniz rule: for every f ∈ C∞(Ω),X ,Y ∈ T (Ω)

∇̄X (fY ) = f ∇̄X Y + (Xf )Y ;

4. ∇̄ is torsion-free: for every X ,Y ∈ T (Ω)

∇̄X Y − ∇̄Y X = [X ,Y ],

where [X ,Y ] ∈ T (Ω) is the Lie bracket

[X ,Y ]f = X (Yf )− Y (Xf );

5. ∇̄ is compatible with the standard inner product 〈·, ·〉 of Rm: for
every X ,Y ,Z ∈ T (Ω)

X 〈Y ,Z 〉 = 〈∇̄X Y ,Z 〉+ 〈Y , ∇̄X Z 〉.

The standard connection ∇̄ is the unique mapping
T (Ω)× T (Ω)→ T (Ω) satisfying the properties above.
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Riemannian metric on a submanifold of Rn+k

Let Ω ⊂ Rn be an open set and ϕ : Ω→ Rm a smooth mapping. We
say that ϕ is an immersion if the differential dϕ(x) : Rn → Rm is
injective for all x ∈ Ω. Then necessarily m ≥ n.
If ϕ is one-to-one, the image M = ϕΩ ⊂ Rm is called an immersed
submanifold of Rm.
If, in addition, ϕ is a homeomorphism onto ϕΩ ⊂ Rm, then ϕ is an
embedding and M = ϕΩ is an n-dimensional submanifold of Rm. Note
that here M has the relative topology.
In general, a smooth manifold M ⊂ Rm is a submanifold of Rm if the
inclusion π : M ↪→ Rm, π(x) = x , is an embedding. [We use the
notation π = (π1, π2, . . . , πm) for the inclusion, because then
πi : M → R will be the projection to the xi -axis.]
Let M ⊂ Rm be a smooth n-dimensional submanifold of Rm. Thus
locally M can be parametrized by a smooth homeomorphism
ϕ : Ω→ U, where Ω ⊂ Rn and U ⊂ M are open, and the differential
dϕ(x) at x is of rank n for every x ∈ Ω.
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Riemannian metric on a submanifold of Rn+k

We identify the tangent space TpM,p ∈ U, with the image
dϕ
(
ϕ−1(p)

)
Rn. Thus TpM is an n-dimensional vector subspace of Rm.

Each TpM inherits an inner product 〈·, ·〉 from Rm: for every vectors
v ,w ∈ TpM,

〈v ,w〉 = v · w ,
where v ·w is just the standard inner product in Rm. This induced inner
product 〈·, ·〉 defines the Riemannian metric (and thus the Riemannian
submanifold structure) on M.
For every p ∈ M, the inner product of Rm splits Rm orthogonally into

TpM ⊕ TpM⊥.

We write NpM = TpM⊥ and call it the normal space of M at p.
Furthermore, we denote by

TM =
⊔

p∈M

TpM and NM =
⊔

p∈M

NpM

the tangent and normal bundles, respectively.
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Levi-Civita connection on a submanifold of Rn+k

Next we define the Levi-Civita connection ∇ on M that satisfies
conditions 1.-5. above, in particular, that is compatible with the induced
Riemannian metric.
Let X̃ , Ỹ ∈ T (Ω) be smooth vector fields in an open set Ω ⊂ Rm. Then
at every p ∈ Ω ∩M (

∇̄X̃ Ỹ
)

p =
(
∇̄X̃ Ỹ

)>
p +

(
∇̄X̃ Ỹ

)⊥
p ,

where (
∇̄X̃ Ỹ

)>
p ∈ TpM and

(
∇̄X̃ Ỹ

)⊥
p ∈ NpM.
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Levi-Civita connection on a submanifold of Rn+k

Definition
The Levi-Civita connection ∇ of M is simply the orthogonal projection
on TM of the standard connection of Rm. More precisely, let
X ,Y ∈ T (U) be smooth vector fields on an open set U ⊂ M, i.e. at
each point p ∈ U

Xp =
m∑

i=1

ai(p)∂i , Yp =
m∑

i=1

bi(p)∂i ,

where ai ,bi : U → R are smooth functions. For each p ∈ U, let X̃ and
Ỹ be (any) smooth extensions of X and Y to a neighborhood (in Rm) of
p. Then we define

(∇X Y )p =
(
∇̄X̃ Ỹ

)>
p ∈ TpM,
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Levi-Civita connection on a submanifold of Rn+k

where (
∇̄X̃ Ỹ

)>
p

is the orthogonal projection of
(
∇̄X̃ Ỹ

)
p to TpM.

Remark
The properties 1.-5. hold for ∇. In particular, ∇ is torsion-free and
compatible with the induced inner product (Riemannian metric).

Remark
Note that ∇X Y is well-defined, i.e. does not depend on the extensions
X̃ and Ỹ .
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Second fundamental form of M

Denote by N (M) the set of all smooth mappings V : M → Rm such that
Vp ∈ NpM for all p ∈ M.

Definition
The second fundamental form of M is the map
B : T (M)× T (M)→ N (M),

B(X ,Y ) =
(
∇̄X̃ Ỹ

)⊥
,

where X̃ and Ỹ are smooth extensions of X and Y , respectively.

Thus we have the Gauss formula on M

∇̄X Y = ∇X Y + B(X ,Y )

for vector fields X ,Y ∈ T (M).
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Second fundamental form of M

Note again that the left hand side makes sense since
(
∇̄X Y

)
p

depends only on Xp ∈ TpM and values of Y along any path
γ : ]− ε, ε[→ M, with γ(0) = p and γ̇0 = Xp.

Lemma
The second fundamental form is
(a) independent of extensions of X and Y ;
(b) symmetric in X and Y ;
(c) C∞-bilinear.

Lemma [The Weingarten equation]
Suppose X ,Y ∈ T (M) and N ∈ N (M). Then on M we have

〈∇̄X N,Y 〉 = −〈N,B(X ,Y )〉,

where X ,Y , and N are extended to Rm (and still denoted by X ,Y ,N).
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Mean curvature vector

Definition
The mean curvature vector H of M at p ∈ M is ("the trace of the
second fundamental form")

Hp =
n∑

i=1

B(Xi ,Xi),

where X1, . . . ,Xn is an orthonormal basis of TpM.

In general, if v1, v2, . . . , vn is an arbitrary basis of TpM and gij = 〈vi , vj〉,
then

Hp =
n∑

i,j=1

g ij B(vi , vj),

where (g ij) is the inverse of the matrix (gij).
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Mean curvature vector

Remarks
Note that Hp ∈ NpM.
Often Hp is defined as ("the mean trace of the second fundamental
form")

Hp =
1
n

n∑
i=1

B(Xi ,Xi),

where X1, . . . ,Xn is an orthonormal basis of TpM.

Definition
An immersed submanifold M ⊂ Rm is minimal if H ≡ 0 on M.
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Scalar second fundamental form

Let M be an (m − 1)-dimensional submanifold of Rm, i.e. a
hypersurface.

Definition
The scalar second fundamental form of M is the symmetric 2-tensor
defined by

h(X ,Y ) = 〈B(X ,Y ),N〉,

where N ∈ N (M) is a smooth unit normal vector field.

Since M is of co-dimension 1, the unit normal vector Np spans NpM at
every point p ∈ M. Hence

B(X ,Y ) = h(X ,Y )N.

Note that the sign of h depends on the choice of N (versus −N).
We have the Gauss formula for hypersurfaces of Rm:

∇̄X Y = ∇X Y + h(X ,Y )N.
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Weingarten map

Definition
The Weingarten map L : TM → TM is defined as

LX = −∇̄X N.

Lemma
For each p ∈ M, the Weingarten map is a self-adjoint endomorphism
of TpM.

Since for every p ∈ M, L : TpM → TpM is self-adjoint, it follows from
linear algebra that it has real eigenvalues κ1, κ2, . . . , κm−1 and that
there exists an orthonormal basis E1,E2, . . . ,Em−1 of TpM consisting
of eigenvectors

LEi = κiEi , i = 1, . . . ,m − 1.

The eigenvalues of L are called the principal curvatures and the
corresponding eigenvectors are called principal directions.
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Weingarten map

Let κ1, κ2, . . . , κm−1 and E1,E2, . . . ,Em−1 be as above. By the
Weingarten equation

〈N,B(Ei ,Ei)〉 = −〈∇̄Ei N,Ei〉 = 〈LEi ,Ei〉 = 〈κiEi ,Ei〉 = κi .

Hence the mean curvature vector is given by

Hp =
(m−1∑

i=1

κi

)
N.

The Gaussian curvature of M at p is the determinant

K = det L = κ1κ2 · · ·κm−1.
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Riemannian curvature tensor

Definition
The Riemannian curvature tensor of M is the mapping

R : T (M)× T (M)× T (M)→ T (M)

defined by

R(X ,Y )Z = ∇X∇Y Z −∇Y∇X Z −∇[X ,Y ]Z .

Note that the Riemannian curvature tensor R̄ of Rm vanishes
identically.
The sectional curvature of a 2-dimensional subspace P ⊂ TpM
spanned by vectors v ,w ∈ TpM is defined by

K M(P) =
〈RM(v ,w)w , v〉
|v ∧ w |2

,

where
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Riemannian curvature tensor

|v ∧ w | =
√
|v |2|w |2 − 〈v ,w〉2

is the area of the parallelogram spanned by v and w .
It satisfies the Gauss equation

K M(P)|v ∧ w |2 − K̄ (P)|v ∧ w |2︸ ︷︷ ︸
=0

= 〈B(v , v),B(w ,w)〉 − |B(v ,w)|2.

Here K̄ (P) denotes the sectional curvature of P with respect to the
ambient space which in our setting is Rm and therefore K̄ ≡ 0.
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Riemannian curvature tensor

Let κ1, κ2, . . . , κm−1 and E1,E2, . . . ,Em−1 be as above. By the
Weingarten equation

〈N,B(Ei ,Ej)〉 = −〈∇̄Ei N,Ej〉 = 〈LEi ,Ej〉 = 〈κiEi ,Ej〉 = κiδij .

Hence
B(Ei ,Ej) = κiδijN

and therefore

K (P) = 〈B(Ei ,Ei),B(Ej ,Ej)〉 − |B(Ei ,Ej)|2︸ ︷︷ ︸
=0

= κiκj

for a 2-dimensional subspace P = span(Ei ,Ej) ⊂ TpM.
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Gradient

Let M ⊂ Rm be an n-dimensional smooth submanifold. Let f : M → R
be a C1-function, p ∈ M, and X ∈ TpM. Then

Xf = (f ◦ γ)′(0),

where γ : ]− ε, ε[→ M is any C1-path, with γ(0) = p and γ̇0 = X .
The gradient of f is defined as

∇M f (p) =
n∑

i=1

(Xi f )Xi ,

where {Xi}ni=1 is an orthonormal basis of TpM.
In particular, if f is a C1-function in a neighborhood (in Rm) of p, then

∇M f (p) =
(
∇f (p)

)>
,

where

∇f (p) =
m∑

i=1

∂i f (p)∂i
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Gradient

is the standard gradient (in Rm) of f .
Given a chart ϕ : U → Rn, U ⊂ M, and the corresponding local
parametrization F = ϕ−1 : ϕU → U we can write ∇M f in U as

∇M f =
n∑

i,j=1

g ij ∂f
∂x i

∂F
∂x j ,

where g ij : U → R, ∂f
∂x i : U → R, and ∂F

∂x j : U → TM are defined as

∂f
∂x i (p) =

∂(f ◦ ϕ−1)

∂x i

(
ϕ(p)

)
,

∂F
∂x j (p) =

(
∂F1

∂x j

(
ϕ(p)

)
, . . . ,

∂Fm

∂x j

(
ϕ(p)

))
∈ TpM,

gij(p) =
∂F
∂x i (p) · ∂F

∂x j (p),

and (g ij) is the inverse of the matrix (gij).
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Divergence

The divergence (on M) of a C1-smooth vector field V (not necessarily
tangential) at p ∈ M is defined as follows.
Let {X1,X2, . . . ,Xn,Yn+1, . . . ,Ym} be an orthonormal basis of Rm such
that {X1,X2, . . . ,Xn} forms a basis of TpM. We write

V =
n∑

i=1

v iXi +
m∑

i=n+1

v iYi .

Then

divM V (p) =
n∑

i=1

〈∇̄Xi V ,Xi〉 =
n∑

i=1

〈(
∇̄Xi V

)>
,Xi
〉
.

Thus for a smooth vector field V ∈ T (M), divM V (p) is the trace of the
linear map TpM → TpM, v 7→ ∇v V . In local coordinates,

divM V =
1
√

g

n∑
i=1

∂

∂x i

(√
gv i), g = det(gij).
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Laplacian

The Laplacian of a C2-function f ∈ C2(M) is defined as

∆M f = divM ∇M f =
1
√

g

n∑
i,j=1

∂

∂x i

(√
gg ij ∂f

∂x j

)
.

In normal coordinates at p, we have the simple formula

∆M f (p) =
n∑

i=1

∂i∂f f (p).
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Jacobi formula

Lemma [Jacobi formula]
Let aij : Rd → R be smooth functions, with i , j = 1, . . . ,n, and let
A = (aij). Then in the open set {x ∈ Rm : det A > 0} we have

∂

∂x`
log det A = tr

(
∂A
∂x`

A−1
)

for ` = 1, . . . ,d .

Writing A−1 = (aij), the right hand side reads as
n∑

i,j=1

∂aij

∂x`
aji ,

and so
∂ det A
∂x`

= det A
n∑

i,j=1

∂aij

∂x`
aji . (2)
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Mean curvature and Laplacian

Suppose that M ⊂ Rm is a smooth n-dimensional submanifold and let
ϕ : U → Ω ⊂ Rn be a chart defined in an open set U ⊂ M.
Furthermore, let F = ϕ−1 : Ω→ U be local parametrization. As before,
F induces a frame

{
∂F
∂x j

}
,(

∂F
∂x j

)
p

=

(
∂F1

∂x j

(
ϕ(p)

)
, . . . ,

∂Fm

∂x j

(
ϕ(p)

))
∈ TpM,

on U.
Now

∇̄ ∂F
∂x i

∂F
∂x j = ∂2F

∂x i∂x j ,(
∇̄ ∂F
∂x i

∂F
∂x j

)
p

=

(
∂2F1

∂x i∂x j , . . . ,
∂2Fm

∂x i∂x j

)(
ϕ(p)

)
∈ Rm.
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Mean curvature and Laplacian

Hence the mean curvature vector Hp at p ∈ U is given by

Hp =
n∑

i,j=1

g ij(p) B
(
∂F
∂x i ,

∂F
∂x j

)
=

n∑
i,j=1

g ij(p)

(
∇̄ ∂F
∂x i

∂F
∂x j

)⊥
p

=

 n∑
i,j=1

g ij(p)
∂2F
∂x i∂x j

(
ϕ(p)

)⊥ .
Next we express the mean curvature vector as the Laplacian (on M) of
the inclusion π : M ↪→ Rm.
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Mean curvature and Laplacian

Theorem
Suppose that M ⊂ Rm is a smooth n-dimensional submanifold and let
π : M ↪→ Rm, π = (π1, . . . , πm), be the inclusion. Then

Hp = ∆Mπ(p) =
(
∆Mπ1, . . . ,∆

Mπm
)
(p)

for p ∈ M.

Proof. Fix p ∈ M and let ϕ : U → Ω ⊂ Rn be a chart at p and
∂

∂x i , i = 1, . . . ,n,

the coordinate frame associated to the chart (U, ϕ). Furthermore, let
F = ϕ−1 : Ω→ U be the corresponding (local) parametrization.
Then, in fact,(

∂

∂x j

)
p
πi =

∂

∂x j

(
πi ◦ ϕ−1︸ ︷︷ ︸
=πi◦F=Fi

)(
ϕ(p)

)
=
∂Fi

∂x j

(
ϕ(p)

)
.
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Mean curvature and Laplacian

We claim that ∆Mπ(p) ∈ NpM, that is

∆Mπ(p) · ∂F
∂xk = ∆Mπ(p) · ∂π

∂xk = 0

for all k = 1, . . . ,n.
We compute by using the Jacobi formula and the symmetry of (gij)

∆Mπ(p) · ∂π
∂xk =

( 1
√

g

n∑
i,j=1

∂

∂x i

(√
gg ij ∂π

∂x j

))
· ∂π
∂xk

=
1
√

g

n∑
i,j=1

∂

∂x i

(√
gg ij ∂π

∂x j ·
∂π

∂xk︸ ︷︷ ︸
=gjk

)
−

n∑
i,j=1

g ij ∂π

∂x j ·
∂2π

∂x i∂xk

=
1
√

g

n∑
i,j=1

∂

∂x i

(√
g g ijgjk︸ ︷︷ ︸

δik

)
−

n∑
i,j=1

g ij ∂π

∂x j ·
∂2π

∂x i∂xk
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Mean curvature and Laplacian

=
1
√

g
∂
√

g
∂xk −

n∑
i,j=1

g ij ∂π

∂x j ·
∂2π

∂x i∂xk

=
1
√

g
1

2
√

g
∂g
∂xk −

n∑
i,j=1

g ij ∂π

∂x j ·
∂2π

∂x i∂xk

=
1
2

n∑
i,j=1

g ij ∂

∂xk

〈 ∂π
∂x i ,

∂π

∂x j

〉
−

n∑
i,j=1

g ij ∂π

∂x j ·
∂2π

∂x i∂xk

=
1
2

n∑
i,j=1

g ij
(

∂2π

∂x i∂xk ·
∂π

∂x j +
∂2π

∂x j∂xk ·
∂π

∂x i

)
−

n∑
i,j=1

g ij ∂π

∂x j ·
∂2π

∂x i∂xk

= 0.
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Mean curvature and Laplacian

Thus ∆Mπ(p) ∈ NpM since
(
∂π
∂xk

)
p, k = 1, . . . ,n, forms a basis of TpM.

Furthermore,

∆Mπ(p) =
1
√

g

n∑
i,j=1

∂

∂x i

(√
gg ij ∂π

∂x j

)

=
1
√

g

n∑
i,j=1

∂

∂x i

(√
gg ij

) ∂π
∂x j︸ ︷︷ ︸

∈TpM

+
n∑

i,j=1

g ij ∂2π

∂x i∂x j .

On the other hand, since ∆Mπ(p) ∈ NpM, we have

∆Mπ(p) =
(
∆Mπ(p)

)⊥
=
( 1
√

g

n∑
i,j=1

∂

∂x i

(√
gg ij

) ∂π
∂x j

)⊥
︸ ︷︷ ︸

=0

+
( n∑

i,j=1

g ij ∂2π

∂x i∂x j

)⊥
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Mean curvature and Laplacian

=
( n∑

i,j=1

g ij ∂2π

∂x i∂x j

)⊥
= Hp

as claimed.
We have proved:

∆Mπ(p) = Hp.
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First variation formula

Let Ω ⊂ Rn be open, f : Ω→ Rm an immersion, and M = f Ω. Every
x ∈ Ω has a neighborhood U ⊂ Ω such that f |Ω is an embedding.
Define the ”tangent space” Tf (x)M and the normal space Nf (x)M as
Tf (x)M = Tf (x)U = df (x)Rn and Nf (x)M = Nf (x)U.
Let ϕ ∈ C∞0 (Ω) be a real-valued function and let N : Ω→ Sm−1 be
smooth such that Nx = N(x) ∈ Nf (x)M ∀x ∈ Ω.
Define a variation of M (more precisely, a variation of the immersion
f : Ω→ Rm) with compact support as

F : Ω×]− ε, ε[→ Rm, F (x , t) = f (x) + tϕ(x)Nx ,

with ε > 0 small enough.
Let {∂x1 , ∂x2 , . . . , ∂xn , ∂t} be the standard basis of Rn+1 and define
vector fields Fxi and Ft along F by setting
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First variation formula

Fxi (x , t) = dF (x , t)∂xi and Ft (x , t) = dF (x , t)∂t .

Then Fxi and Ft commute because

[Fxi ,Ft ] = dF [∂xi , ∂t ]︸ ︷︷ ︸
=0

= 0.

Note that Ft (x ,0) = dF (x ,0)∂t = ϕ(x)Nx ∈ Nf (x)M.
Define

gij(x , t) = 〈Fxi (x , t),Fxj (x , t)〉 and g(x , t) = det gij(x , t).

Then the volume of Mt = F (Ω, t) is

Vol Mt =

∫
Ω

√
g(x , t)dx .
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First variation formula

Hence
d
dt

Vol Mt |t=0 =

∫
Ω

∂

∂t

√
g(x , t)

|t=0
dx

=
1
2

∫
Ω

1√
g(x ,0)

∂

∂t
g(x , t)|t=0dx

=
1
2

∫
Ω

√
g(x ,0)

n∑
i,j=1

g ij(x ,0)
∂gij(x , t)

∂t |t=0
dx

=
1
2

∫
Ω

√
g(x ,0)

n∑
i,j=1

g ij(x ,0)
∂

∂t
〈Fxi ,Fxj 〉(x , t)|t=0

dx

=
1
2

∫
Ω

√
g(x ,0)

n∑
i,j=1

g ij(x ,0)
(〈
∇̄Ft Fxi ,Fxj

〉
+
〈
∇̄Ft Fxj ,Fxi

〉)
(x ,0)dx

=

∫
Ω

√
g(x ,0)

n∑
i,j=1

g ij(x ,0)
〈
∇̄Ft Fxi ,Fxj

〉
(x ,0)dx
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First variation formula

=

∫
Ω

√
g(x ,0)

n∑
i,j=1

g ij(x ,0)
〈
∇̄Fxi

Ft ,Fxj

〉
(x ,0)dx

=

∫
Ω

√
g(x ,0)

n∑
i,j=1

g ij(x ,0)
〈
∇̄Fxi

(
ϕ(x)Nx ),Fxj

〉
(x ,0)dx

= −
∫

Ω

√
g(x ,0)

n∑
i,j=1

g ij(x ,0)
〈
B
(
Fxi ,Fxj

)
, ϕ(x)Nx

〉
(x ,0)dx

= −
∫

Ω

√
g(x ,0)

〈
Hf (x), ϕ(x)Nx

〉
(x ,0)dx

=: −
∫

M
〈H,V 〉.
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First variation formula

Above Hf (x) denotes the mean curvature vector at f (x) of fU, with f |U
an embedding. Moreover,

−
∫

M
〈H,V 〉

is a shorthand notation in case the immersion f : Ω→ Rm is non-
injective, whereas Vp = ϕ(f−1(p))Nf−1(p) for an injective immersion f .
Conclusion: If H ≡ 0, then M = M0 is a critical point for the volume
functional. Otherwise, "deforming" M into the direction of Hp
decreases the volume.
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Riemannian manifold

Let M̃ be an m-dimensional C∞-manifold, TxM̃ the tangent space at
x ∈ M̃, and

T M̃ =
⊔

x∈M̃

TxM̃

the tangent bundle. [Note: T M̃ is a 2m-dimensional smooth manifold.]
A Riemannian metric (tensor) on M̃ is a 2-covariant tensor field
g̃ ∈ T 2(M̃) that is symmetric (i.e. g̃(X ,Y ) = g̃(Y ,X )) and positive
definite (i.e. g̃(Xx ,Xx ) > 0 if Xx 6= 0). A smooth manifold M̃ with a
given Riemannian metric g̃ is called a Riemannian manifold (M̃, g̃).
A Riemannian metric thus defines an inner product on each TxM̃,
written as 〈v ,w〉 = 〈v ,w〉x = g̃(v ,w) for v ,w ∈ TxM̃.
The inner product varies smoothly in x in the sense that for every
X ,Y ∈ T (M̃), the function M̃ → R, x 7→ g̃(Xx ,Yx ), is C∞.
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Riemannian connection

Remark
Given a Riemannian manifold (M̃, g̃), there exists a unique mapping

∇̃ : T (M̃)× T (M̃)→ T (M̃), ∇̃(X ,Y ) = ∇̃X Y ,

called the Riemannian (or the Levi-Civita) connection on (M̃, g̃)
satisfying the properties 1.-5. below.

1. ∇̃X Y is C∞-linear in X : for every functions f ,g ∈ C∞(M̃) and
vector fields X ,Y ,V ∈ T (M̃)

∇̃fX+gY V = f ∇̃X V + g∇̃Y V ;

2. ∇̃X Y is R-linear in Y : for every a,b ∈ R,X ,Y ,V ∈ T (M̃)

∇̃X (aY + bV ) = a∇̃X Y + b∇̃X V ;
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Riemannian connection

3. ∇̃ satisfies the Leibniz rule: for every f ∈ C∞(M̃),X ,Y ∈ T (M̃)

∇̃X (fY ) = f ∇̃X Y + (Xf )Y ;

4. ∇̃ is torsion-free: for every X ,Y ∈ T (M̃)

∇̃X Y − ∇̃Y X = [X ,Y ];

5. ∇̃ is compatible with the Riemannian metric 〈·, ·〉 of M̃: for every
X ,Y ,Z ∈ T (M̃)

X 〈Y ,Z 〉 = 〈∇̃X Y ,Z 〉+ 〈Y , ∇̃X Z 〉.
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Riemannian curvature tensor and sectional curvature

The Riemannian curvature on M̃ is the tensor field

R̃ : T (M̃)× T (M̃)× T (M̃)× → T (M̃)

defined by

R̃(X ,Y )Z = ∇̃X ∇̃Y Z − ∇̃Y ∇̃X Z − ∇̃[X ,Y ]Z .

The sectional curvature of a 2-dimensional subspace P ⊂ TpM̃
spanned by vectors v ,w ∈ TpM̃ is defined by

K̃ (P) =
〈R̃(v ,w)w , v〉
|v ∧ w |2

,

where
|v ∧ w | =

√
|v |2|w |2 − 〈v ,w〉2

is the area of the parallelogram spanned by v and w .
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Ricci curvature

The Ricci curvature on M̃ is the tensor field defined by

R̃ic(x , y) = tr (z 7→ R(z, x)y) = the trace of the linear map z 7→ R(z, x)y .

Hence if e1, . . . ,em is an orthonormal basis of TpM̃, then

R̃ic(x , y) =
m∑

i=1

〈R̃(ei , x)y ,ei〉 =
m∑

i=1

〈R̃(x ,ei)ei , y〉.

We set R̃ic(x) = R̃ic(x , x). If |x | = 1, R̃ic(x) is called the Ricci
curvature in the direction x .
Hence if |x | = 1 and e1, . . . ,em−1 ∈ TpM̃ such that x ,e1, . . . ,em−1 is
an orthonormal basis of TpM̃, we get

R̃ic(x) = 〈R̃(x , x)x , x〉︸ ︷︷ ︸
=0

+
m−1∑
i=1

〈R̃(x ,ei)ei , x〉 =
m−1∑
i=1

K̃ (Pi),

where Pi ⊂ TpM̃ is the plane spanned by x and ei .
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Riemannian structure of submanifolds of M̃.

Let M be an n-dimensional smooth submanifold of (M̃, g̃). Then g̃
induces a Riemannian metric g on M: for every p ∈ M and for every
vectors v ,w ∈ TpM,

g(v ,w) = 〈v ,w〉 = g̃(v ,w).

The Riemannian connection ∇,(
∇X Y

)
p =

(
∇̃X̃ Ỹ

)>
p ,

the second fundamental form B,

B(X ,Y ) =
(
∇̃X̃ Ỹ

)⊥
,

the mean curvature vector

Hp =
n∑

i=1

B(Xi ,Xi),

with X1, . . . ,Xn an orthonormal basis of TpM,
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Riemannian structure of submanifolds of M̃.

and the Riemannian curvature tensor

R(X ,Y )Z = ∇X∇Y Z −∇Y∇X Z −∇[X ,Y ]Z .

are defined as in the case of submanifolds of Rm.
As in the Euclidean setting, we define:

Definition
A submanifold M ⊂ M̃ is minimal if H ≡ 0 on M.
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Minimal graph equation

Let M be an n-dimensional Riemannian manifold, Ω ⊂ M a bounded
open set, and u : Ω̄→ R a C2-function. The graph of u,

Σ =
{(

x ,u(x)
)

: x ∈ Ω̄
}
⊂ M × R := M̃,

is an n-dimensional (C2-smooth) submanifold of M × R. [Note:
M̃ = M × R equipped with the product structure.]
Its (n-dim. measure) volume is given by

A(Σ) =

∫
Ω

√
1 + |∇u|2dV .

Here ∇u is the gradient of u is defined by

〈∇u,X 〉 = Xu

for all vector fields X . Thus

∇u =
n∑

i=1

(Xiu)Xi

if X1, . . . ,Xn are orthonormal.
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Minimal graph equation

As in the Euclidean case, a function u ∈ C2(Ω) is a critical point of the
area (or volume) functional if

M[u] := div

(
∇u√

1 + |∇u|2

)
= 0. (3)

Here div is the divergence defined by

div X = tr (ξ 7→ ∇ξX )

for C1-smooth vector fields X . Again, if u is a solution of (3) in Ω, its
graph Σu is a minimal submanifold of M̃ = M × R.
Furthermore, the function ("height function") Σu → R,(

x ,u(x)
)
7→ u(x),

is a harmonic function on Σu and the mapping ("vertical projection")
Σu → M, (

x ,u(x)
)
7→ x ,

is a harmonic mapping on Σu.
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Dirichlet problem

Next I will explain the idea of a proof of the following theorem:

Theorem
Suppose that Ω b M is a smooth relatively compact open set whose
boundary has positive mean curvature with respect to inwards pointing
unit normal field. Then for each ψ ∈ C2,α(Ω̄) there exists a unique
u ∈ C∞(Ω) ∩ C2,α(Ω̄) that solves the minimal graph equation (3) in Ω
with boundary values u|∂Ω = ψ|∂Ω.

Since ∂Ω ⊂ M is a hypersurface (co-dimension 1), "positive mean
curvature with respect to inwards pointing unit normal field" just means
that the mean curvature vector Hp 6= 0 of ∂Ω is parallel to the inwards
pointing unit normal vector at every p ∈ ∂Ω.
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(Nonlinear) continuity method

Jürgen Jost: Partial Differential Equations:
"Connect what you want to know to what you know already.
This is the continuity method. The idea is that, if you can connect your
given problem continuously with another, simpler, problem that you can
already solve, then you can also solve the former. Of course, the
continuation of solutions requires careful control."
Let ψ ∈ C2,α(Ω̄) be given. Denote

A = {t ∈ [0,1] : ∃ut ∈ C2,α(Ω̄) such thatM[ut ] = 0 in Ω and ut |∂Ω = tψ}.

The idea is simple:
Prove that A 6= ∅ is both open and closed in [0,1], hence A = [0,1]
and, in particular, there exists a solution u, with u|∂Ω = ψ|∂Ω.

1 A 6= ∅ since 0 ∈ A. (The constant function u0 ≡ 0 is a solution.)
2 A is open. This is a consequence of the implicit function theorem.
3 A is closed. This follows from a priori estimates for (smooth)

solutions together with Schauder estimates.
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Implicit function theorem

Recall:
Let E ,F be Banach spaces, U ⊂ E open, and x0 ∈ U. A function
f : U → F is (Fréchet) differentiable at x0 if there exists A ∈ L(E ,F ) (=
continuous linear), called the differential of f at x0, such that

f (x0 + h) = f (x0) + Ah + o(h) as h→ 0.

Implicit function theorem

Let E ,F ,G be Banach spaces, Ω ⊂ E × F open, f ∈ C1(Ω,G), and
(x0, y0) ∈ Ω, with f (x0, y0) = 0. Let D2f (x0, y0) ∈ L(F ,G) be the
differential at x0 of the map y 7→ f (x0, y). If D2f (x0, y0) : F → G is a
linear isomorphism, then there exist neighborhoods U 3 x0, V 3 y0,
and a differentiable map g : U → V such that f

(
x ,g(x)

)
= 0 and

f (x , y) = 0 if and only if y = g(x), for all (x , y) ∈ U × V .

Ilkka Holopainen (University of Helsinki) Minimal submanifolds July 6-10, 2015 59 / 84



Implicit function theorem

Let Ω b M be a relatively compact open set. Denote

[u]α;Ω = sup
{
|u(x)− u(y)|

d(x , y)α
: x , y ∈ Ω, x 6= y

}
, 0 < α ≤ 1,

|Dku|0;Ω = sup
|β|=k

sup
Ω
|Dβu|, k = 0,1,2, . . . ,

[Dku]α;Ω = sup
|β|=k

[Dβu]α;Ω,

‖u‖Ck (Ω̄) =
k∑

j=0

|Dju|0;Ω,

‖u‖Ck,α(Ω̄) = ‖u‖Ck (Ω̄) + [Dku]α;Ω.

The Hölder spaces Ck ,α
0 (Ω̄) ⊂ Ck ,α(Ω̄) ⊂ Ck (Ω̄), k = 0,1,2, . . ., are

Banach spaces equipped with norms ‖·‖Ck,α(Ω̄).
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A is open

To prove that the set

A = {t ∈ [0,1] : ∃ut ∈ C2,α(Ω̄) such thatM[ut ] = 0 in Ω and ut |∂Ω = tψ}.

is open in [0,1], let t0 ∈ A. Need to show that (t0 − ε, t0 + ε) ∩ [0,1] ⊂ A
for some ε > 0.
We apply the implicit function theorem to the mapping
f : R× C2,α

0 (Ω̄)→ Cα(Ω̄),

f (t ,u) =M[u + tψ] = div
∇(u + tψ)√

1 + |∇(u + tψ)|2
.

Note that t ∈ A if and only if f (t , vt ) = 0 for some vt ∈ C2,α
0 (Ω̄) since

(vt + tψ)|∂Ω = tψ|∂Ω and M[vt + tψ] = f (t , vt ) = 0,

and so ut = vt + tψ is the desired solution.
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A is open

Thus let (t0, v0) ∈ A×C2,α
0 (Ω̄). Then f (t0, v0) = 0. Furthermore, f is C1

and D2f (t0, v0) : C2,α
0 (Ω̄)→ Cα(Ω̄) is a linear isomorphism by the

theory of uniformly elliptic linear operators (maximum principles,
Schauder estimates, existence and regularity of solutions to Dirichlet
problem; see e.g. Gilbarg-Trudinger).
The implicit function theorem then implies that A is open in [0,1].
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A is closed

To prove that A is closed, let ti ∈ A, with ti → t ∈ [0,1]. Need to show
that t ∈ A.
Let ui ∈ C2,α(Ω̄) be the solutionM[ui ] = 0, with ui |∂Ω = tiψ|∂Ω.
It suffices to show that

there exists a subsequence (ui) such that ui → u ∈ C2,α(Ω̄) in C2(Ω̄)
norm

since then
u|∂Ω = lim

i→∞
ui |∂Ω = lim

i→∞
tiψ|∂Ω = tψ|∂Ω

and

M[u] = f (t ,u − tψ) = f
(

lim
i→∞

(ti ,ui − tiψ)

)
lim

i→∞
f (ti ,ui − tiψ) = lim

i→∞
M[ui ] = 0.
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A is closed

The existence of such a subsequence follows from a priori estimates

sup
Ω
|ui | ≤ c and sup

Ω
|∇ui | ≤ c,

and Schauder estimates

‖ui‖C2,γ(Ω̄) ≤ c,

with constant c <∞ independent of i .
The estimate

sup
Ω
|ui | ≤ c

follows from the maximum principle (ψ is a bounded function and
constant functions are solutions).
Next we discuss about (interior and boundary) gradient estimates

sup
Ω
|∇ui | ≤ c.
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Boundary gradient estimate: Idea

Suppose that Ω b M is a smooth relatively compact open set whose
boundary has positive mean curvature with respect to inwards pointing
unit normal field. We say that Ω is strictly mean convex .
Let ψ ∈ C2,α(Ω̄) and consider functions w+,w− : Ω̄→ R,

w+(x) = tiψ(x) + ϕ
(
d(x)

)
and w−(x) = tiψ(x)− ϕ

(
d(x)

)
,

where ti ∈ A, d(x) = dist(x , ∂Ω) = min{d(x , y) : y ∈ ∂Ω}, and

ϕ(s) = c1 log(1 + c2s). (4)

Denote

Ωs = {x ∈ Ω: d(x) < s} and Γs = {x ∈ Ω: d(x) = s}.

If x ∈ Γs, for s ≤ s0 small enough, −∆d(x) is the sum of the principal
curvatures of Γs with respect to inwards pointing unit normal.
Since Ω is strictly mean convex, we conclude that ∆d(x) ≤ 0 for
x ∈ Ωs for s ≤ s0 small enough.
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Boundary gradient estimate: Idea

By choosing constants c1, c2 in (4) properly, we conclude that w+ is a
supersolution and w− is a subsolution. Furthermore, w±|∂Ω = ui |∂Ω,
and

w+ ≥ sup
∂Ω

ui , w− ≤ inf
∂Ω

ui on Γt0 .

It follows that

sup
∂Ω
|∇ui | ≤ max

{
sup
∂Ω
|∇w+|, sup

∂Ω
|∇w−|

}
≤ c <∞

for the solution ui ∈ C2,α(Ω̄), with ui |∂Ω = tiψ|∂Ω.
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Interior gradient estimates

I will sketch the proof(s) of the following gradient estimate(s):

Lemma [Rosenberg-Schulze-Spruck]

Let Ω b M be a relatively compact open set and let u ∈ C2(Ω) ∩ C1(Ω̄)
be a solution to the minimal graph equationM[u] = 0 in Ω. Then

sup
Ω

√
1 + |∇u|2 ≤ sup

Ω
e−αu · sup

∂Ω

(
eαu
√

1 + |∇u|2
)
,

where

α2 = sup{max{−Ric(γ, γ),0} : γ ∈ TpM, |γ| = 1, p ∈ Ω}.
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Interior gradient estimates

For the next lemma, suppose that Ω b M is a relatively compact open
set, x ∈ Ω, and B(x , ρ) ⊂ Ω, where ρ < inj(x), the injectivity radius of
M at x .

Lemma [Spruck]

Let u ∈ C3(Ω) be a non-negative solution of the mean curvature
equation

div
∇u(y)√

1 + |∇u(y)|2
= H(y)

in Ω. Then√
1 + |∇u(x)|2 ≤ 32 max

{
1,
(
u(x)/ρ

)2}e16Cu(x)e16(u(x)/ρ)2

for a constant C independent of u, but depending on the C1-norm of
H, on a lower bound for the sectional curvatures of M, and on an upper
bound for ∆d2 on Ω.
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"Bochner-type" formula

Both lemmas are proved by applying maximum principle to a
subsolution of an elliptic PDE. For that purpose, we need the following
"Bochner-type" formula.

Theorem
Let Mm be a Riemannian manifold and let N = Mm × R be equipped
with the product structure. Let Em+1 be the unit vector field such that

Em+1(p, t) =
∂

∂t
∀(p, t) ∈ N.

Let Σ ⊂ N be an m-dimensional (smooth) hypersurface with induced
structure, η a smooth unit normal vector field to Σ, and define
f (x) = 〈ηx ,Em+1(x)〉 for x ∈ Σ. Then

∆f = ∆Σf = −〈E>m+1,∇h〉 −
(

R̃ic(η) + ‖B‖2
)

f ,
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"Bochner-type" formula

where h = 〈H, η〉 is the scalar mean curvature of Σ (w.r.t. η),
∇h = ∇Σh its gradient, ‖B‖2 the squared norm of B, and R̃ic the Ricci
curvature on N.

Remarks
1

‖B‖2 =
m∑

i,j=1

|B(Ei ,Ej)|2 =
m∑

i=1

κ2
i ,

where E1, . . . ,Em is a (local) orthonormal frame on Σ and κi ’s are
the principal curvatures.

2 f (x) = 〈ηx ,Em+1(x)〉 is the "vertical (R-)component" of ηx .
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"Bochner-type" formula

Corollary
Suppose that Σ has a constant mean curvature. Then

∆f = −
(

R̃ic(η) + ‖B‖2
)

f .

Remark
If Σ is the graph of a solution u : Ω→ R of the minimal graph equation
in Ω ⊂ M, then h ≡ 0 and

f =
1√

1 + |∇Mu|2
.
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Proof of the "Bochner-type" formula

Fix x ∈ Σ and let E1(x), . . . ,Em(x) be an orthonormal basis of Tx Σ
consisting of the eigenvectors of the Weingarten map L : Tx Σ→ Tx Σ,
with eigenvalues κi . Extend E1(x), . . . ,Em(x) to a geodesic frame
E1, . . . ,Em in a neighborhood of x in Σ (thus (∇Ej Ei)x = 0).
Then

∆f (x) =
m∑

i=1

EiEi f (x).

We compute at x :

∆f (x) =
m∑

i=1

EiEi f =
∑

i

EiEi〈η,Em+1〉

=
∑

i

Ei
(
〈∇̄Eiη,Em+1〉+ 〈η, ∇̄Ei Em+1︸ ︷︷ ︸

=0

〉
)

=
∑

i

〈∇̄Ei ∇̄Eiη,Em+1〉.
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Proof of the "Bochner-type" formula

Write

Em+1 =
m∑

j=1

ejEj + fη, f = 〈η,Em+1〉.

Then

∆f (x) =
∑

i

〈∇̄Ei ∇̄Eiη,Em+1〉

=
∑
i,j

ej〈∇̄Ei ∇̄Eiη,Ej〉+
∑

i

f 〈∇̄Ei ∇̄Eiη, η〉.

We have at x :

〈∇̄Ei ∇̄Eiη,Ej〉 = 〈R̄(Ej ,Ei)Ei , η〉 − Ej〈∇̄Ei Ei , η〉 (5)

and
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Proof of the "Bochner-type" formula

〈∇̄Ei ∇̄Eiη, η〉 = −〈∇̄Ei (LEi)︸ ︷︷ ︸
∈T Σ

, η〉

= −〈∇Ei (LEi)︸ ︷︷ ︸
∈T Σ

, η〉

︸ ︷︷ ︸
=0

−〈
(
∇̄Ei (LEi)

)⊥
, η〉

= −〈B(Ei ,LEi), η〉 = 〈∇̄Eiη︸ ︷︷ ︸
=−LEi

,LEi〉

= −〈LEi ,LEi〉 = −κ2
i .

So,

∆f (x) =
∑

i

〈∇̄Ei ∇̄Eiη,Em+1〉

=
∑
i,j

ej
(
〈R̄(Ej ,Ei)Ei , η〉 − Ej〈∇̄Ei Ei , η〉

)
− f
∑

i

κ2
i
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Proof of the "Bochner-type" formula

=
∑

i

〈R̄(Em+1 − fη,Ei)Ei , η〉 −

∑
j

ejEj

 〈∇̄Ei Ei , η〉

− f‖B‖2

=
∑

i

〈R̄(Em+1,Ei)Ei , η〉︸ ︷︷ ︸
=R̃ic(Em+1,η)=0

−f
∑

i

〈R̄(η,Ei)Ei , η〉︸ ︷︷ ︸
=R̃ic(η)

−
∑

i

∑
j

ejEj

 〈∇̄Ei Ei , η〉 − f‖B‖2

= −f R̃ic(η)−

∑
j

ejEj

∑
i

(
〈∇Ei Ei︸ ︷︷ ︸
∈T Σ

, η〉

︸ ︷︷ ︸
=0

+〈
(
∇̄Ei Ei

)⊥︸ ︷︷ ︸
=B(Ei ,Ei )

, η〉
)
− f‖B‖2
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Proof of the "Bochner-type" formula

= −f R̃ic(η)−
(∑

j

ejEj︸ ︷︷ ︸
=E>m+1

)
〈H, η〉︸ ︷︷ ︸

=h

−f‖B‖2

= −f R̃ic(η)− 〈E>m+1,∇h〉 − f‖B‖2.

We are left with the Proof of (5):

〈∇̄Ei ∇̄Eiη,Ej〉 = 〈R̄(Ej ,Ei)Ei , η〉 − Ej〈∇̄Ei Ei , η〉.
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Proof of the "Bochner-type" formula

First we note that

Ej〈∇̄Ei Ei , η〉 = 〈∇̄Ej ∇̄Ei Ei , η〉+ 〈∇̄Ei Ei , ∇̄Ejη︸ ︷︷ ︸
∈T Σ

〉

= 〈∇̄Ej ∇̄Ei Ei , η〉+ 〈∇Ei Ei︸ ︷︷ ︸
=0 at x

, ∇̄Ejη〉

= 〈∇̄Ej ∇̄Ei Ei , η〉.
Thus

〈∇̄Ei ∇̄Eiη,Ej〉 = 〈R̄(Ej ,Ei)Ei , η〉 − Ej〈∇̄Ei Ei , η〉
⇐⇒ 〈∇̄Ei ∇̄Eiη,Ej〉 = 〈∇̄Ej ∇̄Ei Ei , η〉 − 〈∇̄Ei ∇̄Ej Ei , η〉

− 〈∇̄ [Ej ,Ei ]︸ ︷︷ ︸
=0 at x

Ei , η〉 − 〈∇̄Ej ∇̄Ei Ei , η〉 − 〈∇̄Ei Ei , ∇̄Ejη︸ ︷︷ ︸
∈T Σ

〉

︸ ︷︷ ︸
=〈∇Ei Ei︸ ︷︷ ︸

=0

,∇̄Ej
η〉=0
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Proof of the "Bochner-type" formula

⇐⇒ 〈∇̄Ei ∇̄Eiη,Ej〉 = −〈∇̄Ei ∇̄Ej Ei , η〉 (6)

Remains to verify (6).
Since 〈Ei , η〉 ≡ 0 (along Σ), we have Ej〈Ei , η〉 = 0.
Hence

0 ≡ 〈∇̄Ej Ei , η〉+ 〈Ei , ∇̄Ejη〉
= 〈∇̄Ej Ei , η〉+ 〈Ei ,−LEj〉︸ ︷︷ ︸

〈−LEi ,Ej 〉

= 〈∇̄Ej Ei , η〉+ 〈Ej , ∇̄Eiη〉

along Σ.
Therefore

0 = Ei

(
〈∇̄Ej Ei , η〉+ 〈Ej , ∇̄Eiη〉

)
= 〈∇̄Ei ∇̄Ej Ei , η〉+ 〈∇̄Ej Ei , ∇̄Eiη〉
+ 〈∇̄Ei Ej , ∇̄Eiη〉+ 〈Ej , ∇̄Ei ∇̄Eiη〉
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Proof of the "Bochner-type" formula

= 〈∇̄Ei ∇̄Ej Ei , η〉+ 〈∇Ej Ei︸ ︷︷ ︸
=0 at x

+
(
∇̄Ej Ei

)⊥
,−LEi︸ ︷︷ ︸
∈T Σ

〉

+ 〈∇Ei Ej︸ ︷︷ ︸
=0 at x

+
(
∇̄Ei Ej

)⊥
,−LEi︸ ︷︷ ︸
∈T Σ

〉+ 〈Ej , ∇̄Ei ∇̄Eiη〉

= 〈∇̄Ei ∇̄Ej Ei , η〉+ 〈Ej , ∇̄Ei ∇̄Eiη〉

So, we have proved:

∆Σf = −〈E>m+1,∇h〉 −
(

R̃ic(η) + ‖B‖2
)

f ,

where f = 〈η,Em+1〉.
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Proof of Rosenberg-Schulze-Spruck estimate

Let’s recall:

Lemma [Rosenberg-Schulze-Spruck]

Let Ω b M be a relatively compact open set and let u ∈ C2(Ω) ∩ C1(Ω̄)
be a solution to the minimal graph equationM[u] = 0 in Ω. Then

sup
Ω

√
1 + |∇u|2 ≤ sup

Ω
e−αu · sup

∂Ω

(
eαu
√

1 + |∇u|2
)
, (7)

where

α2 = sup{max{−Ric(γ, γ),0} : γ ∈ TpM, |γ| = 1, p ∈ Ω}.

Idea of the proof
Write the Riemannian metric of M (locally) as

ds2 = σijdx idx j (Einstein summation).
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Proof of Rosenberg-Schulze-Spruck estimate

Corresponding local coordinate frame on Σ = Σu is then given by

Xi = ∂i + ui∂t , ui =
∂u
∂xi

, u(x , t) := u(x), x ∈ Ω.

Furthermore, the unit normal field (to Σ) can be written as

η =
1
W

(−ui∂i + ∂t ), ui = σijuj , W :=
√

1 + |∇u|2.

So, the induced Riem. metric (from M × R) on Σ is

ds2
Σ = gijdτ idτ j , dτ i(Xj) = δij ,

gij = 〈Xi ,Xj〉 = σij + uiuj ,

g ij = σij − uiuj

W 2 .

The minimal graph equation in nondivergence form is then

1
W

g ij
(

uij − Γk
ij uk

)
=

1
W

g ijDiDju = 0.
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Proof of Rosenberg-Schulze-Spruck estimate

Recall the "Bochner" formula for H ≡ 0.

∆Σ

(
1
W

)
= −

(
R̃ic(η) + ‖B‖2

) 1
W
.

We have

R̃ic(η) =
(
1−W−2)RicM(γ), γ =

ηM

|ηM |
, (8)

where ηM is the "TM-component" of η ∈ TM ⊕ R. [Note: If η is vertical
(ηM = 0), then W = 1 and (8) holds trivially.]
Using (8), the standard formula

∆(g ◦ ϕ) = (g′ ◦ ϕ)∆ϕ+ (g′′ ◦ ϕ)|∇ϕ|2,

and the "Bochner" formula, we get

∆ΣW =
2|∇ΣW |2

W
+ W‖B‖2 + W (1−W−2) RicM(γ).
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Proof of Rosenberg-Schulze-Spruck estimate

Define (on Ω× R) a function h(x) = ϕ(x)W (x), depending only on
x-variable of points (x , t) ∈ Ω× R, with

ϕ = eαu, α ≥ 0,

and an elliptic second order operator

Lh := ∆Σh − 2g ij XiW
W

Xjh = ∆Σh − 2g ij Wi

W
hj

= ϕ

(
∆ΣW − 2

W
|∇ΣW |2

)
+ W ∆Σϕ

= W
(

∆Σϕ+ ϕ
(
‖B‖2 +

(
1−W−2)RicM(η)

))
.

Since

∆Σϕ = ∆Σ (eαu) = αeαu ∆Σu︸︷︷︸
=0

+α2eαu|∇Σu|2 = α2eαu|∇Σu|2

= α2eαu(1−W−2),
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Proof of Rosenberg-Schulze-Spruck estimate

we get
Lh = h

(
‖B‖2 +

(
1−W−2

)(
α2 + RicM(γ)

))
.

Choosing α as in the claim, i.e.

α2 = sup{max{−Ric(γ, γ),0} : γ ∈ TpM, |γ| = 1, p ∈ Ω},

we obtain
Lh ≥ 0, i.e. h = eαuW is a subsolution.

By the Hopf maximum principle

sup
Ω

eαuW = sup
∂Ω

eαuW ,

and the estimate (7) follows.
The proof of the gradient estimate due to Spruck follows similar lines.
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