Minimal submanifolds

llkka Holopainen

University of Helsinki
ilkka.holopainen@helsinki.fi

July 6-10, 2015

Overview

(4) Minimal graph equation: Euclidean setting

- Minimal graph equation
(2) Geometry of submanifolds of \mathbb{R}^{n+k}
- Standard connection of \mathbb{R}^{m}
- Riemannian structure on a submanifold of \mathbb{R}^{n+k}
- Second fundamental form
- Mean curvature vector
- Hypersurfaces, scalar second fundamental form, and Weingarten map
- Gradient, divergence, and Laplacian on M
- Mean curvature and Laplacian
- First variation formula
(3) Minimal graph equation: Riemannian setting
- Riemannian manifold
- Riemannian submanifold
- Minimal graph equation
- Dirichlet problem for minimal graph equation

Area functional

Suppose that $u: \bar{\Omega} \rightarrow \mathbb{R}$ is a C^{2}-function, where $\Omega \subset \mathbb{R}^{2}$ is a bounded open set. Denote by $\Sigma=\Sigma_{u} \subset \mathbb{R}^{3}$ its graph

$$
\Sigma=\{(x, y, u(x, y)):(x, y) \in \bar{\Omega}\} .
$$

It is a 2 -dimensional submanifold of \mathbb{R}^{3} and the tangent space (plane) $T_{p} \Sigma$ at $p=(x, y, u(x, y)) \in \Sigma$ is spanned by vectors $\left(1,0, u_{x}\right)$ and $\left(0,1, u_{y}\right)$, where u_{x} and u_{y} denote the partial derivatives of u with respect to x and y, respectively.
The absolute value

$$
\left|\left(1,0, u_{x}\right) \times\left(0,1, u_{y}\right)\right|
$$

is the area of the parallelogram spanned by $\left(1,0, u_{x}\right)$ and $\left(0,1, u_{y}\right)$, and so the area of the graph is

Area functional

$$
\begin{aligned}
\mathcal{A}(\Sigma) & =\int_{\Omega}\left|\left(1,0, u_{x}\right) \times\left(0,1, u_{y}\right)\right|=\int_{\Omega} \sqrt{1+u_{x}^{2}+u_{y}^{2}} \\
& =\int_{\Omega} \sqrt{1+|\nabla u|^{2}}
\end{aligned}
$$

Let $\eta \in C_{0}^{2}(\Omega)$. Then the graphs of u and $u+t \eta, t \in \mathbb{R}$, have the same "boundary" $\partial \Sigma=\{(x, y, u(x, y):(x, y) \in \partial \Omega\}$ and

$$
\mathcal{A}\left(\Sigma_{u+t \eta}\right)=\int_{\Omega} \sqrt{1+|\nabla u+t \nabla \eta|^{2}}
$$

Suppose that Σ_{u} has the minimal area among all graphs with the same boundary $\partial \Sigma_{u}$. Then, of course,

$$
\frac{d}{d t} \mathcal{A}\left(\Sigma_{u+t \eta}\right)_{\mid t=0}=0
$$

Minimal graph equation

Differentiating with respect to t and using Green's formula we obtain

$$
\begin{aligned}
& \frac{d}{d t} \mathcal{A}\left(\Gamma_{u+t \eta}\right)_{\mid t=0}=\frac{d}{d t} \int_{\Omega} \sqrt{1+|\nabla u+t \nabla \eta|^{2}} \\
&=\int_{\Omega=0} \frac{d}{d t} \sqrt{1+|\nabla u+t \nabla \eta|^{2}} \\
& \mid t=0 \\
&=\int_{\Omega} \frac{1}{2}\left(1+|\nabla u|^{2}\right)^{-1 / 2} \frac{d}{d t}\langle\nabla(u+t \eta), \nabla(u+t \eta)\rangle_{\mid t=0} \\
&=\int_{\Omega} \frac{\langle\nabla u, \nabla \eta\rangle}{\sqrt{1+|\nabla u|^{2}}} \\
&=-\int_{\Omega} \eta \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right) \\
&=0
\end{aligned}
$$

Minimal graph equation

We say that $u \in C^{2}(\Omega)$ is a critical point for the area functional if

$$
\frac{d}{d t} \mathcal{A}\left(\Sigma_{u+t_{\eta}}\right)_{t=0}=0 \quad \forall \eta \in C_{0}^{2}(\Omega) .
$$

In that case, since

$$
\int_{\Omega} \eta \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0
$$

for all $\eta \in C_{0}^{2}(\Omega)$, we conclude that $u \in C^{2}(\Omega)$ is a critical point if and only if it satisfies the minimal graph equation (or the mean curvature equation)

$$
\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0 .
$$

Minimal graph equation

In particular, if $u \in C^{2}(\Omega)$ minimizes the area (of graphs) among smooth functions with the same values on $\partial \Omega$, it is a solution to the minimal graph equation.
Conversely, a critical point u for the area functional minimizes the area among all (smooth) surfaces inside the cylinder $\Omega \times \mathbb{R}$ with the same boundary $\partial \Sigma_{u}$.
For this and later purposes we note that the unit vector

$$
\begin{aligned}
N & =\frac{\left(1,0, u_{x}\right) \times\left(0,1, u_{y}\right)}{\left|\left(1,0, u_{x}\right) \times\left(0,1, u_{y}\right)\right|}=\frac{\left(-u_{x},-u_{y}, 1\right)}{\sqrt{1+|\nabla u|^{2}}} \\
& =\frac{\left(-\nabla \mathbb{R}^{2} u, 1\right)}{\sqrt{1+|\nabla u|^{2}}}
\end{aligned}
$$

is orthogonal to both $\left(1,0, u_{x}\right)$ and $\left(0,1, u_{y}\right)$, and therefore it is the (upwards pointing) unit normal to Σ_{u}.

Minimal graph equation

We define a 2-form ω in the cylinder $\Omega \times \mathbb{R}$ by setting

$$
\omega(X, Y)=\operatorname{det}(X, Y, N)
$$

for vectors $X, Y \in \mathbb{R}^{3}$.
Note that ω is the contraction by N of the standard volume form
$\tilde{\omega}=d x \wedge d y \wedge d z$, i.e. $\omega=N\lrcorner \tilde{\omega}=i_{N} \tilde{\omega}$. Hence ω is the volume (area) form of Σ_{u}.
Since $\omega=a d x \wedge d y+b d x \wedge d z+c d y \wedge d z$ and

$$
\begin{aligned}
a & =\omega\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=1 / \sqrt{1+|\nabla u|^{2}} \\
b & =\omega\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial z}\right)=u_{y} / \sqrt{1+|\nabla u|^{2}} \\
c & =\omega\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)=-u_{x} / \sqrt{1+|\nabla u|^{2}}
\end{aligned}
$$

Minimal graph equation

we see that

$$
\omega=\frac{d x \wedge d y-u_{x} d y \wedge d z-u_{y} d z \wedge d x}{\sqrt{1+|\nabla u|^{2}}}
$$

Furthermore, since u satisfies the minimal graph equation, we obtain

$$
\begin{aligned}
d \omega & =\left\{\frac{\partial}{\partial x}\left(\frac{-u_{x}}{\sqrt{1+|\nabla u|^{2}}}\right)+\frac{\partial}{\partial y}\left(\frac{-u_{y}}{\sqrt{1+|\nabla u|^{2}}}\right)\right\} d x \wedge d y \wedge d z \\
& =0
\end{aligned}
$$

Thus ω is a closed 2-form in the cylinder $\Omega \times \mathbb{R}$.
Let then Σ be another (smooth) surface (not necessarily a graph) in $\Omega \times \mathbb{R}$ with the same boundary than $\Sigma_{u}\left(\partial \Sigma_{u}=\partial \Sigma\right)$. Then Σ and Σ_{u} bound an open set $U \subset \mathbb{R}^{3}$ where $d \omega=0$. The set U may have several components but applying Stokes' theorem in each component we obtain

$$
\int_{\Sigma_{u}} \omega=\int_{\Sigma} \omega
$$

Minimal graph equation

On the other hand, by definition $|\omega(X, Y)|=|\operatorname{det}(X, Y, N)|$ is the volume of the polyhedron spanned by vectors X, Y, and N. In particular, for any unit vectors X and Y,

$$
|\omega(X, Y)| \leq 1
$$

with the equality if and only if X, Y, and N are orthonormal. Hence

$$
\begin{equation*}
\mathcal{A}\left(\Sigma_{u}\right)=\int_{\Sigma_{u}} \omega=\int_{\Sigma} \omega \leq \mathcal{A}(\Sigma) \tag{1}
\end{equation*}
$$

This shows that Σ_{u} minimizes the area among such surfaces (inside $\Omega \times \mathbb{R})$.
If Ω is convex, then Σ_{u} is area-minimizing among all surfaces $\Sigma \subset \mathbb{R}^{3}$ with $\partial \Sigma=\partial \Sigma_{u}$. To see this, let Σ be such a surface and let $P: \mathbb{R}^{3} \rightarrow \Omega \times \mathbb{R}$ be the nearest point projection. The convexity of Ω implies that P is 1 -Lipschitz map that is equal to the identity on $\Omega \times \mathbb{R}$. In particular, $\mathcal{A}(P \Sigma) \leq \mathcal{A}(\Sigma)$. Applying (1) to $P \Sigma$ we obtain

$$
\mathcal{A}\left(\Sigma_{u}\right) \leq \mathcal{A}(P \Sigma) \leq \mathcal{A}(\Sigma)
$$

Minimal graph equation

Remark

All of the above holds in higher dimensions, too.
Suppose that $\Omega \subset \mathbb{R}^{n}$ is a bounded open set and $u: \bar{\Omega} \rightarrow \mathbb{R}$ a smooth function. Then the area (n-dimensional measure) of the graph

$$
\Sigma_{u}=\{(x, u(x)): x \in \Omega\} \subset \Omega \times \mathbb{R}
$$

is:

$$
\mathcal{A}(u)=\int_{\Omega} \sqrt{1+|\nabla u|^{2}} d x
$$

Remark

If $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is a solution to the minimal graph equation, its graph Σ_{u} need not minimize the area among all hypersurfaces with the same boundary $\partial \Sigma_{u}$. (Hardt, Lau, Lin: Non-minimality of minimal graphs, Indiana Univ. Math. J. 36 (1987), 849-855)

Standard connection of \mathbb{R}^{m}

We denote by

$$
\partial_{i}=\frac{\partial}{\partial x_{i}}, i=1, \ldots, m,
$$

the standard basis of \mathbb{R}^{m}. Thus these vectors are orthonormal with respect to the standard inner product $\langle\cdot, \cdot\rangle$.
A vector field defined on an open set $\Omega \subset \mathbb{R}^{m}$ is a mapping $V: \Omega \rightarrow \mathbb{R}^{m}$ which we write as

$$
V_{p}=V(p)=\sum_{i=1}^{m} v^{i}(p) \partial_{i}
$$

where $v^{i}: \Omega \rightarrow \mathbb{R}, i=1, \ldots, m$, are (component) functions.
Vector fields act on smooth functions f as

$$
V f=\sum_{i=1}^{m} v^{i}(p) \partial_{i} f, \quad \partial_{i} f=\frac{\partial f}{\partial x_{i}} .
$$

Standard connection of \mathbb{R}^{m}

Thus

$$
V_{p} f:=V f(p)=\sum_{i=1}^{m} v^{i}(p) \partial_{i} f(p)=\left\langle V_{p}, \nabla f(p)\right\rangle
$$

is the directional derivative of f along vector V_{p}.

Definition

Let X and V be vector fields such that V is smooth (i.e. the component functions v^{i} are smooth). Then the covariant derivative of V in the direction X_{p} is the vector

$$
\left(\bar{\nabla}_{X} V\right)_{p}=\left(X_{p} v^{1}, X_{p} v^{2}, \ldots, X_{p} v^{m}\right) \in \mathbb{R}^{m}
$$

and $\bar{\nabla}_{X} V$ is the vector field $p \mapsto\left(\bar{\nabla}_{X} V\right)_{p}$.
We denote by $\mathcal{T}(\Omega)$ the set of all smooth vector fields on $\Omega \subset \mathbb{R}^{m}$.

Standard connection of \mathbb{R}^{m}

Definition

The mapping

$$
\bar{\nabla}: \mathcal{T}(\Omega) \times \mathcal{T}(\Omega) \rightarrow \mathcal{T}(\Omega), \quad \bar{\nabla}(X, Y)=\bar{\nabla}_{X} Y
$$

is called the Levi-Civita connection on Ω. We also call it the standard connection on $\Omega \subset \mathbb{R}^{m}$.

The standard connection has the following properties:

1. $\bar{\nabla}_{X} Y$ is C^{∞}-linear in X : for every functions $f, g \in C^{\infty}(\Omega)$ and vector fields $X, Y, V \in \mathcal{T}(\Omega)$

$$
\bar{\nabla}_{f X+g Y} V=f \bar{\nabla}_{X} V+g \bar{\nabla}_{Y} V
$$

2. $\bar{\nabla}_{X} Y$ is \mathbb{R}-linear in Y : for every $a, b \in \mathbb{R}, X, Y, V \in \mathcal{T}(\Omega)$

$$
\bar{\nabla}_{X}(a Y+b V)=a \bar{\nabla}_{X} Y+b \bar{\nabla}_{X} V
$$

Standard connection of \mathbb{R}^{m}

3. $\bar{\nabla}$ satisfies the Leibniz rule: for every $f \in C^{\infty}(\Omega), X, Y \in \mathcal{T}(\Omega)$

$$
\bar{\nabla}_{X}(f Y)=f \bar{\nabla}_{X} Y+(X f) Y
$$

4. $\bar{\nabla}$ is torsion-free: for every $X, Y \in \mathcal{T}(\Omega)$

$$
\bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X=[X, Y]
$$

where $[X, Y] \in \mathcal{T}(\Omega)$ is the Lie bracket

$$
[X, Y] f=X(Y f)-Y(X f) ;
$$

5. $\bar{\nabla}$ is compatible with the standard inner product $\langle\cdot, \cdot\rangle$ of \mathbb{R}^{m} : for every $X, Y, Z \in \mathcal{T}(\Omega)$

$$
X\langle Y, Z\rangle=\left\langle\bar{\nabla}_{X} Y, Z\right\rangle+\left\langle Y, \bar{\nabla}_{X} Z\right\rangle .
$$

The standard connection $\bar{\nabla}$ is the unique mapping $\mathcal{T}(\Omega) \times \mathcal{T}(\Omega) \rightarrow \mathcal{T}(\Omega)$ satisfying the properties above.

Riemannian metric on a submanifold of \mathbb{R}^{n+k}

Let $\Omega \subset \mathbb{R}^{n}$ be an open set and $\varphi: \Omega \rightarrow \mathbb{R}^{m}$ a smooth mapping. We say that φ is an immersion if the differential $d \varphi(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is injective for all $x \in \Omega$. Then necessarily $m \geq n$.
If φ is one-to-one, the image $M=\varphi \Omega \subset \mathbb{R}^{m}$ is called an immersed submanifold of \mathbb{R}^{m}.
If, in addition, φ is a homeomorphism onto $\varphi \Omega \subset \mathbb{R}^{m}$, then φ is an embedding and $M=\varphi \Omega$ is an n-dimensional submanifold of \mathbb{R}^{m}. Note that here M has the relative topology.
In general, a smooth manifold $M \subset \mathbb{R}^{m}$ is a submanifold of \mathbb{R}^{m} if the inclusion $\pi: M \hookrightarrow \mathbb{R}^{m}, \pi(x)=x$, is an embedding. [We use the notation $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)$ for the inclusion, because then $\pi_{i}: M \rightarrow \mathbb{R}$ will be the projection to the x_{i}-axis.]
Let $M \subset \mathbb{R}^{m}$ be a smooth n-dimensional submanifold of \mathbb{R}^{m}. Thus locally M can be parametrized by a smooth homeomorphism $\varphi: \Omega \rightarrow U$, where $\Omega \subset \mathbb{R}^{n}$ and $U \subset M$ are open, and the differential $d \varphi(x)$ at x is of rank n for every $x \in \Omega$.

Riemannian metric on a submanifold of \mathbb{R}^{n+k}

We identify the tangent space $T_{p} M, p \in U$, with the image $d \varphi\left(\varphi^{-1}(p)\right) \mathbb{R}^{n}$. Thus $T_{p} M$ is an n-dimensional vector subspace of \mathbb{R}^{m}. Each $T_{p} M$ inherits an inner product $\langle\cdot, \cdot\rangle$ from \mathbb{R}^{m} : for every vectors $v, w \in T_{p} M$,

$$
\langle v, w\rangle=v \cdot w,
$$

where $v \cdot w$ is just the standard inner product in \mathbb{R}^{m}. This induced inner product $\langle\cdot, \cdot\rangle$ defines the Riemannian metric (and thus the Riemannian submanifold structure) on M.
For every $p \in M$, the inner product of \mathbb{R}^{m} splits \mathbb{R}^{m} orthogonally into

$$
T_{p} M \oplus T_{p} M^{\perp}
$$

We write $N_{p} M=T_{p} M^{\perp}$ and call it the normal space of M at p. Furthermore, we denote by

$$
T M=\bigsqcup_{p \in M} T_{p} M \quad \text { and } \quad N M=\bigsqcup_{p \in M} N_{p} M
$$

the tangent and normal bundles, respectively.

Levi-Civita connection on a submanifold of \mathbb{R}^{n+k}

Next we define the Levi-Civita connection ∇ on M that satisfies conditions 1.-5. above, in particular, that is compatible with the induced Riemannian metric.
Let $\tilde{X}, \tilde{Y} \in \mathcal{T}(\Omega)$ be smooth vector fields in an open set $\Omega \subset \mathbb{R}^{m}$. Then at every $p \in \Omega \cap M$

$$
\left(\bar{\nabla}_{\tilde{X}} \tilde{Y}\right)_{p}=\left(\bar{\nabla}_{\tilde{X}} \tilde{Y}\right)_{p}^{\top}+\left(\bar{\nabla}_{\tilde{X}} \tilde{Y}\right)_{p}^{\perp}
$$

where

$$
\left(\bar{\nabla}_{\tilde{X}} \tilde{Y}\right)_{p}^{\top} \in T_{p} M \quad \text { and } \quad\left(\bar{\nabla}_{\tilde{X}} \tilde{Y}\right)_{p}^{\perp} \in N_{p} M
$$

Levi-Civita connection on a submanifold of \mathbb{R}^{n+k}

Definition

The Levi-Civita connection ∇ of M is simply the orthogonal projection on $T M$ of the standard connection of \mathbb{R}^{m}. More precisely, let $X, Y \in \mathcal{T}(U)$ be smooth vector fields on an open set $U \subset M$, i.e. at each point $p \in U$

$$
X_{p}=\sum_{i=1}^{m} a^{i}(p) \partial_{i}, \quad Y_{p}=\sum_{i=1}^{m} b^{i}(p) \partial_{i}
$$

where $a^{i}, b^{i}: U \rightarrow \mathbb{R}$ are smooth functions. For each $p \in U$, let \tilde{X} and \tilde{Y} be (any) smooth extensions of X and Y to a neighborhood (in \mathbb{R}^{m}) of p. Then we define

$$
\left(\nabla_{X} Y\right)_{p}=\left(\bar{\nabla}_{\tilde{X}} \tilde{Y}\right)_{p}^{\top} \in T_{p} M
$$

Levi-Civita connection on a submanifold of \mathbb{R}^{n+k}

where

$$
\left(\bar{\nabla}_{\tilde{X}} \tilde{Y}\right)_{p}^{\top}
$$

is the orthogonal projection of $\left(\bar{\nabla}_{\tilde{X}} \tilde{Y}_{p}\right.$ to $T_{p} M$.

Remark

The properties 1.-5. hold for ∇. In particular, ∇ is torsion-free and compatible with the induced inner product (Riemannian metric).

Remark

Note that $\nabla_{X} Y$ is well-defined, i.e. does not depend on the extensions \tilde{X} and \tilde{Y}.

Second fundamental form of M

Denote by $\mathcal{N}(M)$ the set of all smooth mappings $V: M \rightarrow \mathbb{R}^{m}$ such that $V_{p} \in N_{p} M$ for all $p \in M$.

Definition

The second fundamental form of M is the map
B : $\mathcal{T}(M) \times \mathcal{T}(M) \rightarrow \mathcal{N}(M)$,

$$
\mathrm{B}(X, Y)=\left(\bar{\nabla}_{\tilde{X}} \tilde{Y}\right)^{\perp}
$$

where \tilde{X} and \tilde{Y} are smooth extensions of X and Y, respectively.
Thus we have the Gauss formula on M

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+\mathrm{B}(X, Y)
$$

for vector fields $X, Y \in \mathcal{T}(M)$.

Second fundamental form of M

Note again that the left hand side makes sense since $\left(\bar{\nabla}_{X} Y\right)_{p}$ depends only on $X_{p} \in T_{p} M$ and values of Y along any path $\gamma:]-\varepsilon, \varepsilon\left[\rightarrow M\right.$, with $\gamma(0)=p$ and $\dot{\gamma}_{0}=X_{p}$.

Lemma

The second fundamental form is
(a) independent of extensions of X and Y;
(b) symmetric in X and Y;
(c) C^{∞}-bilinear.

Lemma [The Weingarten equation]

Suppose $X, Y \in \mathcal{T}(M)$ and $N \in \mathcal{N}(M)$. Then on M we have

$$
\left\langle\bar{\nabla}_{X} N, Y\right\rangle=-\langle N, \mathrm{~B}(X, Y)\rangle,
$$

where X, Y, and N are extended to \mathbb{R}^{m} (and still denoted by X, Y, N).

Mean curvature vector

Definition

The mean curvature vector H of M at $p \in M$ is ("the trace of the second fundamental form")

$$
H_{p}=\sum_{i=1}^{n} \mathrm{~B}\left(X_{i}, X_{i}\right),
$$

where X_{1}, \ldots, X_{n} is an orthonormal basis of $T_{p} M$.
In general, if $v_{1}, v_{2}, \ldots, v_{n}$ is an arbitrary basis of $T_{p} M$ and $g_{i j}=\left\langle v_{i}, v_{j}\right\rangle$, then

$$
H_{p}=\sum_{i, j=1}^{n} g^{i j} \mathrm{~B}\left(v_{i}, v_{j}\right)
$$

where $\left(g^{i j}\right)$ is the inverse of the matrix $\left(g_{i j}\right)$.

Mean curvature vector

Remarks

Note that $H_{p} \in N_{p} M$.
Often H_{p} is defined as ("the mean trace of the second fundamental form")

$$
H_{p}=\frac{1}{n} \sum_{i=1}^{n} \mathrm{~B}\left(X_{i}, X_{i}\right),
$$

where X_{1}, \ldots, X_{n} is an orthonormal basis of $T_{p} M$.

Definition

An immersed submanifold $M \subset \mathbb{R}^{m}$ is minimal if $H \equiv 0$ on M.

Scalar second fundamental form

Let M be an $(m-1)$-dimensional submanifold of \mathbb{R}^{m}, i.e. a hypersurface.

Definition

The scalar second fundamental form of M is the symmetric 2-tensor defined by

$$
h(X, Y)=\langle\mathrm{B}(X, Y), N\rangle
$$

where $N \in \mathcal{N}(M)$ is a smooth unit normal vector field.
Since M is of co-dimension 1 , the unit normal vector N_{p} spans $N_{p} M$ at every point $p \in M$. Hence

$$
\mathrm{B}(X, Y)=h(X, Y) N
$$

Note that the sign of h depends on the choice of N (versus $-N$). We have the Gauss formula for hypersurfaces of \mathbb{R}^{m} :

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) N
$$

Weingarten map

Definition

The Weingarten map $L: T M \rightarrow T M$ is defined as

$$
L X=-\bar{\nabla}_{X} N .
$$

Lemma

For each $p \in M$, the Weingarten map is a self-adjoint endomorphism of $T_{p} M$.

Since for every $p \in M, L: T_{p} M \rightarrow T_{p} M$ is self-adjoint, it follows from linear algebra that it has real eigenvalues $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{m-1}$ and that there exists an orthonormal basis $E_{1}, E_{2}, \ldots, E_{m-1}$ of $T_{p} M$ consisting of eigenvectors

$$
L E_{i}=\kappa_{i} E_{i}, \quad i=1, \ldots, m-1 .
$$

The eigenvalues of L are called the principal curvatures and the corresponding eigenvectors are called principal directions.

Weingarten map

Let $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{m-1}$ and $E_{1}, E_{2}, \ldots, E_{m-1}$ be as above. By the Weingarten equation

$$
\left\langle N, \mathrm{~B}\left(E_{i}, E_{i}\right)\right\rangle=-\left\langle\bar{\nabla}_{E_{i}} N, E_{i}\right\rangle=\left\langle L E_{i}, E_{i}\right\rangle=\left\langle\kappa_{i} E_{i}, E_{i}\right\rangle=\kappa_{i}
$$

Hence the mean curvature vector is given by

$$
H_{p}=\left(\sum_{i=1}^{m-1} \kappa_{i}\right) N
$$

The Gaussian curvature of M at p is the determinant

$$
K=\operatorname{det} L=\kappa_{1} \kappa_{2} \cdots \kappa_{m-1}
$$

Riemannian curvature tensor

Definition

The Riemannian curvature tensor of M is the mapping

$$
R: \mathcal{T}(M) \times \mathcal{T}(M) \times \mathcal{T}(M) \rightarrow \mathcal{T}(M)
$$

defined by

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z .
$$

Note that the Riemannian curvature tensor \bar{R} of \mathbb{R}^{m} vanishes identically.
The sectional curvature of a 2-dimensional subspace $P \subset T_{p} M$ spanned by vectors $v, w \in T_{p} M$ is defined by

$$
K^{M}(P)=\frac{\left\langle R^{M}(v, w) w, v\right\rangle}{|v \wedge w|^{2}},
$$

where

Riemannian curvature tensor

$$
|v \wedge w|=\sqrt{|v|^{2}|w|^{2}-\langle v, w\rangle^{2}}
$$

is the area of the parallelogram spanned by v and w.
It satisfies the Gauss equation

$$
K^{M}(P)|v \wedge w|^{2}-\underbrace{\bar{K}(P)|v \wedge w|^{2}}_{=0}=\langle\mathrm{B}(v, v), \mathrm{B}(w, w)\rangle-|\mathrm{B}(v, w)|^{2} .
$$

Here $\bar{K}(P)$ denotes the sectional curvature of P with respect to the ambient space which in our setting is \mathbb{R}^{m} and therefore $\bar{K} \equiv 0$.

Riemannian curvature tensor

Let $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{m-1}$ and $E_{1}, E_{2}, \ldots, E_{m-1}$ be as above. By the Weingarten equation

$$
\left\langle N, \mathrm{~B}\left(E_{i}, E_{j}\right)\right\rangle=-\left\langle\bar{\nabla}_{E_{i}} N, E_{j}\right\rangle=\left\langle L E_{i}, E_{j}\right\rangle=\left\langle\kappa_{i} E_{i}, E_{j}\right\rangle=\kappa_{i} \delta_{i j}
$$

Hence

$$
\mathrm{B}\left(E_{i}, E_{j}\right)=\kappa_{i} \delta_{i j} N
$$

and therefore

$$
K(P)=\left\langle\mathrm{B}\left(E_{i}, E_{i}\right), \mathrm{B}\left(E_{j}, E_{j}\right)\right\rangle-\underbrace{\left|\mathrm{B}\left(E_{i}, E_{j}\right)\right|^{2}}_{=0}=\kappa_{i} \kappa_{j}
$$

for a 2-dimensional subspace $P=\operatorname{span}\left(E_{i}, E_{j}\right) \subset T_{p} M$.

Gradient

Let $M \subset \mathbb{R}^{m}$ be an n-dimensional smooth submanifold. Let $f: M \rightarrow \mathbb{R}$ be a C^{1}-function, $p \in M$, and $X \in T_{p} M$. Then

$$
X f=(f \circ \gamma)^{\prime}(0),
$$

where $\gamma:]-\varepsilon, \varepsilon\left[\rightarrow M\right.$ is any C^{1}-path, with $\gamma(0)=p$ and $\dot{\gamma}_{0}=X$. The gradient of f is defined as

$$
\nabla^{M} f(p)=\sum_{i=1}^{n}\left(X_{i} f\right) X_{i},
$$

where $\left\{X_{i}\right\}_{i=1}^{n}$ is an orthonormal basis of $T_{p} M$. In particular, if f is a C^{1}-function in a neighborhood (in \mathbb{R}^{m}) of p, then

$$
\nabla^{M} f(p)=(\nabla f(p))^{\top},
$$

where

$$
\nabla f(p)=\sum_{i=1}^{m} \partial_{i} f(p) \partial_{i}
$$

Gradient

is the standard gradient (in \mathbb{R}^{m}) of f.
Given a chart $\varphi: U \rightarrow \mathbb{R}^{n}, U \subset M$, and the corresponding local parametrization $F=\varphi^{-1}: \varphi U \rightarrow U$ we can write $\nabla^{M_{f}}$ in U as

$$
\nabla^{M} f=\sum_{i, j=1}^{n} g^{i j} \frac{\partial f}{\partial x^{i}} \frac{\partial F}{\partial x^{j}},
$$

where $g^{i j}: U \rightarrow \mathbb{R}, \frac{\partial f}{\partial x^{i}}: U \rightarrow \mathbb{R}$, and $\frac{\partial F}{\partial x^{j}}: U \rightarrow T M$ are defined as

$$
\begin{aligned}
\frac{\partial f}{\partial x^{i}}(p) & =\frac{\partial\left(f \circ \varphi^{-1}\right)}{\partial x^{i}}(\varphi(p)) \\
\frac{\partial F}{\partial x^{j}}(p) & =\left(\frac{\partial F_{1}}{\partial x^{j}}(\varphi(p)), \ldots, \frac{\partial F_{m}}{\partial x^{j}}(\varphi(p))\right) \in T_{p} M \\
g_{i j}(p) & =\frac{\partial F}{\partial x^{i}}(p) \cdot \frac{\partial F}{\partial x^{j}}(p)
\end{aligned}
$$

and $\left(g^{i j}\right)$ is the inverse of the matrix $\left(g_{i j}\right)$.

Divergence

The divergence (on M) of a C^{1}-smooth vector field V (not necessarily tangential) at $p \in M$ is defined as follows.
Let $\left\{X_{1}, X_{2}, \ldots, X_{n}, Y_{n+1}, \ldots, Y_{m}\right\}$ be an orthonormal basis of \mathbb{R}^{m} such that $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ forms a basis of $T_{p} M$. We write

$$
V=\sum_{i=1}^{n} v^{i} X_{i}+\sum_{i=n+1}^{m} v^{i} Y_{i} .
$$

Then

$$
\operatorname{div}^{M} V(p)=\sum_{i=1}^{n}\left\langle\bar{\nabla}_{X_{i}} V, X_{i}\right\rangle=\sum_{i=1}^{n}\left\langle\left(\bar{\nabla}_{X_{i}} V\right)^{\top}, X_{i}\right\rangle .
$$

Thus for a smooth vector field $V \in \mathcal{T}(M)$, $\operatorname{div}^{M} V(p)$ is the trace of the linear map $T_{p} M \rightarrow T_{p} M, v \mapsto \nabla_{V} V$. In local coordinates,

$$
\operatorname{div}^{M} V=\frac{1}{\sqrt{g}} \sum_{i=1}^{n} \frac{\partial}{\partial x^{i}}\left(\sqrt{g} v^{i}\right), \quad g=\operatorname{det}\left(g_{i j}\right)
$$

Laplacian

The Laplacian of a C^{2}-function $f \in C^{2}(M)$ is defined as

$$
\Delta^{M} f=\operatorname{div}^{M} \nabla^{M} f=\frac{1}{\sqrt{g}} \sum_{i, j=1}^{n} \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j} \frac{\partial f}{\partial x^{j}}\right) .
$$

In normal coordinates at p, we have the simple formula

$$
\Delta^{M} f(p)=\sum_{i=1}^{n} \partial_{i} \partial_{f} f(p) .
$$

Jacobi formula

Lemma [Jacobi formula]

Let $a_{i j}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be smooth functions, with $i, j=1, \ldots, n$, and let $A=\left(a_{i j}\right)$. Then in the open set $\left\{x \in \mathbb{R}^{m}: \operatorname{det} A>0\right\}$ we have

$$
\frac{\partial}{\partial x^{\ell}} \log \operatorname{det} A=\operatorname{tr}\left(\frac{\partial A}{\partial x^{\ell}} A^{-1}\right)
$$

for $\ell=1, \ldots, d$.
Writing $A^{-1}=\left(a^{i j}\right)$, the right hand side reads as

$$
\sum_{i, j=1}^{n} \frac{\partial a_{i j}}{\partial x^{\ell}} a^{i j},
$$

and so

$$
\begin{equation*}
\frac{\partial \operatorname{det} A}{\partial x^{\ell}}=\operatorname{det} A \sum_{i, j=1}^{n} \frac{\partial a_{i j}}{\partial x^{\ell}} a^{i j} \tag{2}
\end{equation*}
$$

Mean curvature and Laplacian

Suppose that $M \subset \mathbb{R}^{m}$ is a smooth n-dimensional submanifold and let $\varphi: U \rightarrow \Omega \subset R^{n}$ be a chart defined in an open set $U \subset M$.
Furthermore, let $F=\varphi^{-1}: \Omega \rightarrow U$ be local parametrization. As before, F induces a frame $\left\{\frac{\partial F}{\partial x}\right\}$,

$$
\left(\frac{\partial F}{\partial x^{j}}\right)_{p}=\left(\frac{\partial F_{1}}{\partial x^{j}}(\varphi(p)), \ldots, \frac{\partial F_{m}}{\partial x^{j}}(\varphi(p))\right) \in T_{p} M
$$

on U.
Now

$$
\begin{aligned}
\bar{\nabla}_{\frac{\partial F}{}}^{\partial x^{i}} \frac{\partial F}{\partial x^{j}} & =\frac{\partial^{2} F}{\partial x^{i} \partial x^{j}}, \\
\left(\bar{\nabla}_{\frac{\partial F}{}}^{\partial x^{i}} \frac{\partial F}{\partial x^{j}}\right)_{p} & =\left(\frac{\partial^{2} F_{1}}{\partial x^{i} \partial x^{j}}, \ldots, \frac{\partial^{2} F_{m}}{\partial x^{i} \partial x^{j}}\right)(\varphi(p)) \in \mathbb{R}^{m} .
\end{aligned}
$$

Mean curvature and Laplacian

Hence the mean curvature vector H_{p} at $p \in U$ is given by

$$
\begin{aligned}
H_{p} & =\sum_{i, j=1}^{n} g^{i j}(p) \mathrm{B}\left(\frac{\partial F}{\partial x^{i}}, \frac{\partial F}{\partial x^{j}}\right) \\
& =\sum_{i, j=1}^{n} g^{i j}(p)\left(\bar{\nabla}_{\frac{\partial F}{}}^{\partial x^{i}} \frac{\partial F}{\partial x^{j}}\right)_{p}^{\perp} \\
& =\left(\sum_{i, j=1}^{n} g^{i j}(p) \frac{\partial^{2} F}{\partial x^{i} \partial x^{j}}(\varphi(p))\right)^{\perp}
\end{aligned}
$$

Next we express the mean curvature vector as the Laplacian (on M) of the inclusion $\pi: M \hookrightarrow \mathbb{R}^{m}$.

Mean curvature and Laplacian

Theorem

Suppose that $M \subset \mathbb{R}^{m}$ is a smooth n-dimensional submanifold and let $\pi: M \hookrightarrow \mathbb{R}^{m}, \pi=\left(\pi_{1}, \ldots, \pi_{m}\right)$, be the inclusion. Then

$$
H_{p}=\Delta^{M} \pi(p)=\left(\Delta^{M} \pi_{1}, \ldots, \Delta^{M} \pi_{m}\right)(p)
$$

for $p \in M$.
Proof. Fix $p \in M$ and let $\varphi: U \rightarrow \Omega \subset \mathbb{R}^{n}$ be a chart at p and

$$
\frac{\partial}{\partial x^{i}}, \quad i=1, \ldots, n
$$

the coordinate frame associated to the chart (U, φ). Furthermore, let $F=\varphi^{-1}: \Omega \rightarrow U$ be the corresponding (local) parametrization. Then, in fact,

$$
\left(\frac{\partial}{\partial x^{j}}\right)_{p} \pi_{i}=\frac{\partial}{\partial x^{j}}(\underbrace{\pi_{i} \circ \varphi^{-1}}_{=\pi_{i} \circ F=F_{i}})(\varphi(p))=\frac{\partial F_{i}}{\partial x^{j}}(\varphi(p)) .
$$

Mean curvature and Laplacian

We claim that $\Delta^{M} \pi(p) \in N_{p} M$, that is

$$
\Delta^{M} \pi(p) \cdot \frac{\partial F}{\partial x^{k}}=\Delta^{M} \pi(p) \cdot \frac{\partial \pi}{\partial x^{k}}=0
$$

for all $k=1, \ldots, n$.
We compute by using the Jacobi formula and the symmetry of $\left(g_{i j}\right)$

$$
\begin{aligned}
\Delta^{M} \pi(p) \cdot \frac{\partial \pi}{\partial x^{k}} & =\left(\frac{1}{\sqrt{g}} \sum_{i, j=1}^{n} \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j} \frac{\partial \pi}{\partial x^{j}}\right)\right) \cdot \frac{\partial \pi}{\partial x^{k}} \\
& =\frac{1}{\sqrt{g}} \sum_{i, j=1}^{n} \frac{\partial}{\partial x^{i}}(\sqrt{g} g^{i j} \underbrace{\frac{\partial \pi}{\partial x^{j}} \cdot \frac{\partial \pi}{\partial x^{k}}}_{=g_{j k}})-\sum_{i, j=1}^{n} g^{i j} \frac{\partial \pi}{\partial x^{j}} \cdot \frac{\partial^{2} \pi}{\partial x^{i} \partial x^{k}} \\
& =\frac{1}{\sqrt{g}} \sum_{i, j=1}^{n} \frac{\partial}{\partial x^{i}}(\sqrt{g} \underbrace{g^{i j} g_{j k}}_{\delta_{i k}})-\sum_{i, j=1}^{n} g^{i j} \frac{\partial \pi}{\partial x^{j}} \cdot \frac{\partial^{2} \pi}{\partial x^{i} \partial x^{k}}
\end{aligned}
$$

Mean curvature and Laplacian

$$
=\frac{1}{\sqrt{g}} \frac{\partial \sqrt{g}}{\partial x^{k}}-\sum_{i, j=1}^{n} g^{i j} \frac{\partial \pi}{\partial x^{j}} \cdot \frac{\partial^{2} \pi}{\partial x^{i} \partial x^{k}}
$$

$$
=\frac{1}{\sqrt{g}} \frac{1}{2 \sqrt{g}} \frac{\partial g}{\partial x^{k}}-\sum_{i, j=1}^{n} g^{i j} \frac{\partial \pi}{\partial x^{j}} \cdot \frac{\partial^{2} \pi}{\partial x^{i} \partial x^{k}}
$$

$$
=\frac{1}{2} \sum_{i, j=1}^{n} g^{i j} \frac{\partial}{\partial x^{k}}\left\langle\frac{\partial \pi}{\partial x^{i}}, \frac{\partial \pi}{\partial x^{j}}\right\rangle-\sum_{i, j=1}^{n} g^{i j} \frac{\partial \pi}{\partial x^{j}} \cdot \frac{\partial^{2} \pi}{\partial x^{i} \partial x^{k}}
$$

$$
=\frac{1}{2} \sum_{i, j=1}^{n} g^{i j}\left(\frac{\partial^{2} \pi}{\partial x^{i} \partial x^{k}} \cdot \frac{\partial \pi}{\partial x^{j}}+\frac{\partial^{2} \pi}{\partial x^{j} \partial x^{k}} \cdot \frac{\partial \pi}{\partial x^{i}}\right)-\sum_{i, j=1}^{n} g^{i j} \frac{\partial \pi}{\partial x^{j}} \cdot \frac{\partial^{2} \pi}{\partial x^{i} \partial x^{k}}
$$

$$
=0
$$

Mean curvature and Laplacian

Thus $\Delta^{M} \pi(p) \in N_{p} M$ since $\left(\frac{\partial \pi}{\partial x^{k}}\right)_{p}, k=1, \ldots, n$, forms a basis of $T_{p} M$. Furthermore,

$$
\begin{aligned}
\Delta^{M} \pi(p) & =\frac{1}{\sqrt{g}} \sum_{i, j=1}^{n} \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j} \frac{\partial \pi}{\partial x^{j}}\right) \\
& =\underbrace{\frac{1}{\sqrt{g}} \sum_{i, j=1}^{n} \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j}\right) \frac{\partial \pi}{\partial x^{j}}}_{\in T_{p} M}+\sum_{i, j=1}^{n} g^{i j} \frac{\partial^{2} \pi}{\partial x^{i} \partial x^{j}} .
\end{aligned}
$$

On the other hand, since $\Delta^{M} \pi(p) \in N_{p} M$, we have

$$
\begin{aligned}
\Delta^{M} \pi(p) & =\left(\Delta^{M} \pi(p)\right)^{\perp} \\
& =\underbrace{\left(\frac{1}{\sqrt{g}} \sum_{i, j=1}^{n} \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j}\right) \frac{\partial \pi}{\partial x^{j}}\right)^{\perp}}_{=0}+\left(\sum_{i, j=1}^{n} g^{i j} \frac{\partial^{2} \pi}{\partial x^{i} \partial x^{j}}\right)^{\perp}
\end{aligned}
$$

Mean curvature and Laplacian

$$
=\left(\sum_{i, j=1}^{n} g^{i j} \frac{\partial^{2} \pi}{\partial x^{i} \partial x^{j}}\right)^{\perp}=H_{p}
$$

as claimed.
We have proved:

$$
\Delta^{M} \pi(p)=H_{p}
$$

First variation formula

Let $\Omega \subset \mathbb{R}^{n}$ be open, $f: \Omega \rightarrow \mathbb{R}^{m}$ an immersion, and $M=f \Omega$. Every $x \in \Omega$ has a neighborhood $U \subset \Omega$ such that $f \mid \Omega$ is an embedding. Define the "tangent space" $T_{f(x)} M$ and the normal space $N_{f(x)} M$ as $T_{f(x)} M=T_{f(x)} U=d f(x) \mathbb{R}^{n}$ and $N_{f(x)} M=N_{f(x)} U$.
Let $\varphi \in C_{0}^{\infty}(\Omega)$ be a real-valued function and let $N: \Omega \rightarrow \mathbb{S}^{m-1}$ be smooth such that $N_{x}=N(x) \in N_{f(x)} M \forall x \in \Omega$.
Define a variation of M (more precisely, a variation of the immersion $f: \Omega \rightarrow \mathbb{R}^{m}$) with compact support as

$$
F: \Omega \times]-\varepsilon, \varepsilon\left[\rightarrow \mathbb{R}^{m}, \quad F(x, t)=f(x)+t \varphi(x) N_{x}\right.
$$

with $\varepsilon>0$ small enough.
Let $\left\{\partial_{x_{1}}, \partial_{x_{2}}, \ldots, \partial_{x_{n}}, \partial_{t}\right\}$ be the standard basis of \mathbb{R}^{n+1} and define vector fields $F_{x_{i}}$ and F_{t} along F by setting

First variation formula

$$
F_{x_{i}}(x, t)=d F(x, t) \partial_{x_{i}} \quad \text { and } \quad F_{t}(x, t)=d F(x, t) \partial_{t}
$$

Then $F_{x_{i}}$ and F_{t} commute because

$$
\left[F_{x_{i}}, F_{t}\right]=d F \underbrace{\left[\partial_{x_{i}}, \partial_{t}\right]}_{=0}=0
$$

Note that $F_{t}(x, 0)=d F(x, 0) \partial_{t}=\varphi(x) N_{x} \in N_{f(x)} M$.
Define

$$
g_{i j}(x, t)=\left\langle F_{x_{i}}(x, t), F_{x_{j}}(x, t)\right\rangle \quad \text { and } \quad g(x, t)=\operatorname{det} g_{i j}(x, t) .
$$

Then the volume of $M_{t}=F(\Omega, t)$ is

$$
\operatorname{Vol} M_{t}=\int_{\Omega} \sqrt{g(x, t)} d x
$$

First variation formula

Hence

$$
\begin{aligned}
\frac{d}{d t} & \operatorname{Vol} M_{t \mid t=0}=\int_{\Omega} \frac{\partial}{\partial t} \sqrt{g(x, t)} \\
& =\frac{1}{2} \int_{\Omega=0} \frac{1}{\sqrt{g(x, 0)}} \frac{\partial}{\partial t} g(x, t)_{\mid t=0} d x \\
& =\frac{1}{2} \int_{\Omega} \sqrt{g(x, 0)} \sum_{i, j=1}^{n} g^{i j}(x, 0) \frac{\partial g_{i j}(x, t)}{\partial t}{ }_{\mid t=0} d x \\
& =\frac{1}{2} \int_{\Omega} \sqrt{g(x, 0)} \sum_{i, j=1}^{n} g^{i j}(x, 0) \frac{\partial}{\partial t}\left\langle F_{x_{i}}, F_{x_{j}}\right\rangle(x, t)_{\mid t=0} d x \\
& =\frac{1}{2} \int_{\Omega} \sqrt{g(x, 0)} \sum_{i, j=1}^{n} g^{i j}(x, 0)\left(\left\langle\bar{\nabla}_{F_{t}} F_{x_{i}}, F_{x_{j}}\right\rangle+\left\langle\bar{\nabla}_{F_{t}} F_{x_{j}}, F_{\left.x_{i}\right\rangle}\right\rangle\right)(x, 0) d x \\
& =\int_{\Omega} \sqrt{g(x, 0)} \sum_{i, j=1}^{n} g^{i j}(x, 0)\left\langle\bar{\nabla}_{F_{t}} F_{x_{i}}, F_{x_{j}}\right\rangle(x, 0) d x
\end{aligned}
$$

First variation formula

$$
\begin{aligned}
& =\int_{\Omega} \sqrt{g(x, 0)} \sum_{i, j=1}^{n} g^{i j}(x, 0)\left\langle\bar{\nabla}_{F_{x_{i}}} F_{t}, F_{x_{j}}\right\rangle(x, 0) d x \\
& =\int_{\Omega} \sqrt{g(x, 0)} \sum_{i, j=1}^{n} g^{i j}(x, 0)\left\langle\bar{\nabla}_{F_{x_{i}}}\left(\varphi(x) N_{x}\right), F_{x_{j}}\right\rangle(x, 0) d x \\
& =-\int_{\Omega} \sqrt{g(x, 0)} \sum_{i, j=1}^{n} g^{i j}(x, 0)\left\langle\mathrm{B}\left(F_{x_{i}}, F_{x_{j}}\right), \varphi(x) N_{x}\right\rangle(x, 0) d x \\
& =-\int_{\Omega} \sqrt{g(x, 0)}\left\langle H_{f(x)}, \varphi(x) N_{x}\right\rangle(x, 0) d x \\
& =:-\int_{M}\langle H, V\rangle .
\end{aligned}
$$

First variation formula

Above $H_{f(x)}$ denotes the mean curvature vector at $f(x)$ of $f \cup$, with $f \mid U$ an embedding. Moreover,

$$
-\int_{M}\langle H, V\rangle
$$

is a shorthand notation in case the immersion $f: \Omega \rightarrow \mathbb{R}^{m}$ is noninjective, whereas $V_{p}=\varphi\left(f^{-1}(p)\right) N_{f-1}(p)$ for an injective immersion f. Conclusion: If $H \equiv 0$, then $M=M_{0}$ is a critical point for the volume functional. Otherwise, "deforming" M into the direction of H_{p} decreases the volume.

Riemannian manifold

Let \tilde{M} be an m-dimensional C^{∞}-manifold, $T_{x} \tilde{M}$ the tangent space at $x \in \tilde{M}$, and

$$
T \tilde{M}=\bigsqcup_{x \in \tilde{M}} T_{x} \tilde{M}
$$

the tangent bundle. [Note: $T \tilde{M}$ is a $2 m$-dimensional smooth manifold.]
A Riemannian metric (tensor) on \tilde{M} is a 2-covariant tensor field $\tilde{g} \in \mathcal{T}^{2}(\tilde{M})$ that is symmetric (i.e. $\tilde{g}(X, Y)=\tilde{g}(Y, X)$) and positive definite (i.e. $\tilde{g}\left(X_{x}, X_{x}\right)>0$ if $X_{x} \neq 0$). A smooth manifold \tilde{M} with a given Riemannian metric \tilde{g} is called a Riemannian manifold (\tilde{M}, \tilde{g}). A Riemannian metric thus defines an inner product on each $T_{x} \tilde{M}$, written as $\langle v, w\rangle=\langle v, w\rangle_{x}=\tilde{g}(v, w)$ for $v, w \in T_{x} \tilde{M}$.
The inner product varies smoothly in x in the sense that for every $X, Y \in \mathcal{T}(\tilde{M})$, the function $\tilde{M} \rightarrow \mathbb{R}, x \mapsto \tilde{g}\left(X_{x}, Y_{x}\right)$, is C^{∞}.

Riemannian connection

Remark

Given a Riemannian manifold (\tilde{M}, \tilde{g}), there exists a unique mapping

$$
\tilde{\nabla}: \mathcal{T}(\tilde{M}) \times \mathcal{T}(\tilde{M}) \rightarrow \mathcal{T}(\tilde{M}), \quad \tilde{\nabla}(X, Y)=\tilde{\nabla}_{X} Y
$$

called the Riemannian (or the Levi-Civita) connection on (\tilde{M}, \tilde{g}) satisfying the properties $1 .-5$. below.

1. $\tilde{\nabla}_{X} Y$ is C^{∞}-linear in X : for every functions $f, g \in C^{\infty}(\tilde{M})$ and vector fields $X, Y, V \in \mathcal{T}(\tilde{M})$

$$
\tilde{\nabla}_{f X+g Y} V=f \tilde{\nabla}_{X} V+g \tilde{\nabla}_{Y} V
$$

2. $\tilde{\nabla}_{X} Y$ is \mathbb{R}-linear in Y : for every $a, b \in \mathbb{R}, X, Y, V \in \mathcal{T}(\tilde{M})$

$$
\tilde{\nabla}_{X}(a Y+b V)=a \tilde{\nabla}_{X} Y+b \tilde{\nabla}_{X} V
$$

Riemannian connection

3. $\tilde{\nabla}$ satisfies the Leibniz rule: for every $f \in C^{\infty}(\tilde{M}), X, Y \in \mathcal{T}(\tilde{M})$

$$
\tilde{\nabla}_{X}(f Y)=f \tilde{\nabla}_{X} Y+(X f) Y
$$

4. $\tilde{\nabla}$ is torsion-free: for every $X, Y \in \mathcal{T}(\tilde{M})$

$$
\tilde{\nabla}_{X} Y-\tilde{\nabla}_{Y} X=[X, Y]
$$

5. $\tilde{\nabla}$ is compatible with the Riemannian metric $\langle\cdot, \cdot\rangle$ of \tilde{M} : for every $X, Y, Z \in \mathcal{T}(\tilde{M})$

$$
X\langle Y, Z\rangle=\left\langle\tilde{\nabla}_{X} Y, Z\right\rangle+\left\langle Y, \tilde{\nabla}_{X} Z\right\rangle
$$

Riemannian curvature tensor and sectional curvature

The Riemannian curvature on \tilde{M} is the tensor field

$$
\tilde{R}: \mathcal{T}(\tilde{M}) \times \mathcal{T}(\tilde{M}) \times \mathcal{T}(\tilde{M}) \times \rightarrow \mathcal{T}(\tilde{M})
$$

defined by

$$
\tilde{R}(X, Y) Z=\tilde{\nabla}_{X} \tilde{\nabla}_{Y} Z-\tilde{\nabla}_{Y} \tilde{\nabla}_{X} Z-\tilde{\nabla}_{[X, Y]} Z .
$$

The sectional curvature of a 2-dimensional subspace $P \subset T_{p} \tilde{M}$ spanned by vectors $v, w \in T_{p} \tilde{M}$ is defined by

$$
\tilde{K}(P)=\frac{\langle\tilde{R}(v, w) w, v\rangle}{|v \wedge w|^{2}},
$$

where

$$
|v \wedge w|=\sqrt{|v|^{2}|w|^{2}-\langle v, w\rangle^{2}}
$$

is the area of the parallelogram spanned by v and w.

Ricci curvature

The Ricci curvature on \tilde{M} is the tensor field defined by
$\widetilde{\operatorname{Ric}}(x, y)=\operatorname{tr}(z \mapsto R(z, x) y)=$ the trace of the linear map $z \mapsto R(z, x) y$. Hence if e_{1}, \ldots, e_{m} is an orthonormal basis of $T_{p} \tilde{M}$, then

$$
\widetilde{\operatorname{Ric}}(x, y)=\sum_{i=1}^{m}\left\langle\tilde{R}\left(e_{i}, x\right) y, e_{i}\right\rangle=\sum_{i=1}^{m}\left\langle\tilde{R}\left(x, e_{i}\right) e_{i}, y\right\rangle .
$$

We set $\widetilde{\operatorname{Ric}}(x)=\widetilde{\operatorname{Ric}}(x, x)$. If $|x|=1, \widetilde{\operatorname{Ric}}(x)$ is called the Ricci curvature in the direction x. Hence if $|x|=1$ and $e_{1}, \ldots, e_{m-1} \in T_{p} \tilde{M}$ such that $x, e_{1}, \ldots, e_{m-1}$ is an orthonormal basis of $T_{p} \tilde{M}$, we get

$$
\widetilde{\operatorname{Ric}}(x)=\underbrace{\langle\tilde{R}(x, x) x, x\rangle}_{=0}+\sum_{i=1}^{m-1}\left\langle\tilde{R}\left(x, e_{i}\right) e_{i}, x\right\rangle=\sum_{i=1}^{m-1} \tilde{K}\left(P_{i}\right),
$$

where $P_{i} \subset T_{p} \tilde{M}$ is the plane spanned by x and e_{i}.

Riemannian structure of submanifolds of \tilde{M}.

Let M be an n-dimensional smooth submanifold of (\tilde{M}, \tilde{g}). Then \tilde{g} induces a Riemannian metric g on M : for every $p \in M$ and for every vectors $v, w \in T_{p} M$,

$$
g(v, w)=\langle v, w\rangle=\tilde{g}(v, w) .
$$

The Riemannian connection ∇,

$$
\left(\nabla_{X} Y\right)_{p}=\left(\tilde{\nabla}_{\tilde{X}} \tilde{Y}\right)_{p}^{\top},
$$

the second fundamental form B,

$$
\mathrm{B}(X, Y)=\left(\tilde{\nabla}_{\tilde{X}} \tilde{Y}\right)^{\perp},
$$

the mean curvature vector

$$
H_{p}=\sum_{i=1}^{n} \mathrm{~B}\left(X_{i}, X_{i}\right),
$$

with X_{1}, \ldots, X_{n} an orthonormal basis of $T_{p} M$,

Riemannian structure of submanifolds of \tilde{M}.

and the Riemannian curvature tensor

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

are defined as in the case of submanifolds of \mathbb{R}^{m}.
As in the Euclidean setting, we define:

Definition

A submanifold $M \subset \tilde{M}$ is minimal if $H \equiv 0$ on M.

Minimal graph equation

Let M be an n-dimensional Riemannian manifold, $\Omega \subset M$ a bounded open set, and $u: \bar{\Omega} \rightarrow \mathbb{R}$ a C^{2}-function. The graph of u,

$$
\Sigma=\{(x, u(x)): x \in \bar{\Omega}\} \subset M \times \mathbb{R}:=\tilde{M}
$$

is an n-dimensional (C^{2}-smooth) submanifold of $M \times \mathbb{R}$. [Note:
$\tilde{M}=M \times \mathbb{R}$ equipped with the product structure.]
Its (n-dim. measure) volume is given by

$$
\mathcal{A}(\Sigma)=\int_{\Omega} \sqrt{1+|\nabla u|^{2}} d V
$$

Here ∇u is the gradient of u is defined by

$$
\langle\nabla u, X\rangle=X u
$$

for all vector fields X. Thus

$$
\nabla u=\sum_{i=1}^{n}\left(X_{i} u\right) X_{i}
$$

if X_{1}, \ldots, X_{n} are orthonormal.

Minimal graph equation

As in the Euclidean case, a function $u \in C^{2}(\Omega)$ is a critical point of the area (or volume) functional if

$$
\begin{equation*}
\mathcal{M}[u]:=\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0 \tag{3}
\end{equation*}
$$

Here div is the divergence defined by

$$
\operatorname{div} X=\operatorname{tr}\left(\xi \mapsto \nabla_{\xi} X\right)
$$

for C^{1}-smooth vector fields X. Again, if u is a solution of (3) in Ω, its graph Σ_{u} is a minimal submanifold of $\tilde{M}=M \times \mathbb{R}$.
Furthermore, the function ("height function") $\Sigma_{u} \rightarrow \mathbb{R}$,

$$
(x, u(x)) \mapsto u(x)
$$

is a harmonic function on Σ_{u} and the mapping ("vertical projection") $\Sigma_{u} \rightarrow M$,

$$
(x, u(x)) \mapsto x
$$

is a harmonic mapping on Σ_{u}.

Dirichlet problem

Next I will explain the idea of a proof of the following theorem:

Theorem

Suppose that $\Omega \Subset M$ is a smooth relatively compact open set whose boundary has positive mean curvature with respect to inwards pointing unit normal field. Then for each $\psi \in C^{2, \alpha}(\bar{\Omega})$ there exists a unique $u \in C^{\infty}(\Omega) \cap C^{2, \alpha}(\bar{\Omega})$ that solves the minimal graph equation (3) in Ω with boundary values $u|\partial \Omega=\psi| \partial \Omega$.

Since $\partial \Omega \subset M$ is a hypersurface (co-dimension 1), "positive mean curvature with respect to inwards pointing unit normal field" just means that the mean curvature vector $H_{p} \neq 0$ of $\partial \Omega$ is parallel to the inwards pointing unit normal vector at every $p \in \partial \Omega$.

(Nonlinear) continuity method

Jürgen Jost: Partial Differential Equations:
"Connect what you want to know to what you know already.
This is the continuity method. The idea is that, if you can connect your given problem continuously with another, simpler, problem that you can already solve, then you can also solve the former. Of course, the continuation of solutions requires careful control." Let $\psi \in C^{2, \alpha}(\bar{\Omega})$ be given. Denote
$A=\left\{t \in[0,1]: \exists u_{t} \in C^{2, \alpha}(\bar{\Omega})\right.$ such that $\mathcal{M}\left[u_{t}\right]=0$ in Ω and $\left.u_{t} \mid \partial \Omega=t \psi\right\}$.
The idea is simple:
Prove that $A \neq \emptyset$ is both open and closed in $[0,1]$, hence $A=[0,1]$ and, in particular, there exists a solution u, with $u|\partial \Omega=\psi| \partial \Omega$.
(1) $A \neq \emptyset$ since $0 \in A$. (The constant function $u_{0} \equiv 0$ is a solution.)
(2) A is open. This is a consequence of the implicit function theorem.
(0 A is closed. This follows from a priori estimates for (smooth) solutions together with Schauder estimates.

Implicit function theorem

Recall:

Let E, F be Banach spaces, $U \subset E$ open, and $x_{0} \in U$. A function $f: U \rightarrow F$ is (Fréchet) differentiable at x_{0} if there exists $A \in L(E, F)(=$ continuous linear), called the differential of f at x_{0}, such that

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+A h+o(h) \quad \text { as } h \rightarrow 0
$$

Implicit function theorem

Let E, F, G be Banach spaces, $\Omega \subset E \times F$ open, $f \in C^{1}(\Omega, G)$, and $\left(x_{0}, y_{0}\right) \in \Omega$, with $f\left(x_{0}, y_{0}\right)=0$. Let $D_{2} f\left(x_{0}, y_{0}\right) \in L(F, G)$ be the differential at x_{0} of the map $y \mapsto f\left(x_{0}, y\right)$. If $D_{2} f\left(x_{0}, y_{0}\right): F \rightarrow G$ is a linear isomorphism, then there exist neighborhoods $U \ni x_{0}, V \ni y_{0}$, and a differentiable map $g: U \rightarrow V$ such that $f(x, g(x))=0$ and $f(x, y)=0$ if and only if $y=g(x)$, for all $(x, y) \in U \times V$.

Implicit function theorem

Let $\Omega \Subset M$ be a relatively compact open set. Denote

$$
\begin{aligned}
{[u]_{\alpha ; \Omega} } & =\sup \left\{\frac{|u(x)-u(y)|}{d(x, y)^{\alpha}}: x, y \in \Omega, x \neq y\right\}, 0<\alpha \leq 1, \\
\left|D^{k} u\right|_{0 ; \Omega} & =\sup _{|\beta|=k} \sup \left|D^{\beta} u\right|, k=0,1,2, \ldots, \\
{\left[D^{k} u\right]_{\alpha ; \Omega} } & =\sup _{|\beta|=k}\left[D^{\beta} u\right]_{\alpha ; \Omega}, \\
\|u\|_{C^{k}(\bar{\Omega})} & =\sum_{j=0}^{k}\left|D^{j} u\right|_{0 ; \Omega}, \\
\|u\|_{C^{k, \alpha}(\bar{\Omega})} & =\|u\|_{C^{k}(\bar{\Omega})}+\left[D^{k} u\right]_{\alpha ; \Omega} .
\end{aligned}
$$

The Hölder spaces $C_{0}^{k, \alpha}(\bar{\Omega}) \subset C^{k, \alpha}(\bar{\Omega}) \subset C^{k}(\bar{\Omega}), k=0,1,2, \ldots$, are Banach spaces equipped with norms $\|\cdot\|_{C^{k, \alpha}(\bar{\Omega})}$.

A is open

To prove that the set
$A=\left\{t \in[0,1]: \exists u_{t} \in C^{2, \alpha}(\bar{\Omega})\right.$ such that $\mathcal{M}\left[u_{t}\right]=0$ in Ω and $\left.u_{t} \mid \partial \Omega=t \psi\right\}$. is open in $[0,1]$, let $t_{0} \in A$. Need to show that $\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right) \cap[0,1] \subset A$ for some $\varepsilon>0$.
We apply the implicit function theorem to the mapping $f: \mathbb{R} \times C_{0}^{2, \alpha}(\bar{\Omega}) \rightarrow C^{\alpha}(\bar{\Omega})$,

$$
f(t, u)=\mathcal{M}[u+t \psi]=\operatorname{div} \frac{\nabla(u+t \psi)}{\sqrt{1+|\nabla(u+t \psi)|^{2}}}
$$

Note that $t \in A$ if and only if $f\left(t, v_{t}\right)=0$ for some $v_{t} \in C_{0}^{2, \alpha}(\bar{\Omega})$ since

$$
\left(v_{t}+t \psi\right)|\partial \Omega=t \psi| \partial \Omega \quad \text { and } \quad \mathcal{M}\left[v_{t}+t \psi\right]=f\left(t, v_{t}\right)=0
$$

and so $u_{t}=v_{t}+t \psi$ is the desired solution.

A is open

Thus let $\left(t_{0}, v_{0}\right) \in A \times C_{0}^{2, \alpha}(\bar{\Omega})$. Then $f\left(t_{0}, v_{0}\right)=0$. Furthermore, f is C^{1} and $D_{2} f\left(t_{0}, v_{0}\right): C_{0}^{2, \alpha}(\bar{\Omega}) \rightarrow C^{\alpha}(\bar{\Omega})$ is a linear isomorphism by the theory of uniformly elliptic linear operators (maximum principles, Schauder estimates, existence and regularity of solutions to Dirichlet problem; see e.g. Gilbarg-Trudinger).
The implicit function theorem then implies that A is open in $[0,1]$.

A is closed

To prove that A is closed, let $t_{i} \in A$, with $t_{i} \rightarrow t \in[0,1]$. Need to show that $t \in A$.
Let $u_{i} \in C^{2, \alpha}(\bar{\Omega})$ be the solution $\mathcal{M}\left[u_{i}\right]=0$, with $u_{i}\left|\partial \Omega=t_{i} \psi\right| \partial \Omega$.
It suffices to show that
there exists a subsequence (u_{i}) such that $u_{i} \rightarrow u \in C^{2, \alpha}(\bar{\Omega})$ in $C^{2}(\bar{\Omega})$ norm
since then

$$
u\left|\partial \Omega=\lim _{i \rightarrow \infty} u_{i}\right| \partial \Omega=\lim _{i \rightarrow \infty} t_{i} \psi|\partial \Omega=t \psi| \partial \Omega
$$

and

$$
\begin{gathered}
\mathcal{M}[u]=f(t, u-t \psi)=f\left(\lim _{i \rightarrow \infty}\left(t_{i}, u_{i}-t_{i} \psi\right)\right) \\
\lim _{i \rightarrow \infty} f\left(t_{i}, u_{i}-t_{i} \psi\right)=\lim _{i \rightarrow \infty} \mathcal{M}\left[u_{i}\right]=0 .
\end{gathered}
$$

A is closed

The existence of such a subsequence follows from a priori estimates

$$
\sup _{\Omega}\left|u_{i}\right| \leq c \quad \text { and } \quad \sup _{\Omega}\left|\nabla u_{i}\right| \leq c
$$

and Schauder estimates

$$
\left\|u_{i}\right\|_{C^{2, \gamma}(\bar{\Omega})} \leq c
$$

with constant $c<\infty$ independent of i.
The estimate

$$
\sup _{\Omega}\left|u_{i}\right| \leq c
$$

follows from the maximum principle (ψ is a bounded function and constant functions are solutions).
Next we discuss about (interior and boundary) gradient estimates

$$
\sup _{\Omega}\left|\nabla u_{i}\right| \leq c .
$$

Boundary gradient estimate: Idea

Suppose that $\Omega \Subset M$ is a smooth relatively compact open set whose boundary has positive mean curvature with respect to inwards pointing unit normal field. We say that Ω is strictly mean convex. Let $\psi \in C^{2, \alpha}(\bar{\Omega})$ and consider functions $w^{+}, w^{-}: \bar{\Omega} \rightarrow \mathbb{R}$,

$$
w^{+}(x)=t_{i} \psi(x)+\varphi(d(x)) \quad \text { and } \quad w^{-}(x)=t_{i} \psi(x)-\varphi(d(x)),
$$

where $t_{i} \in A, d(x)=\operatorname{dist}(x, \partial \Omega)=\min \{d(x, y): y \in \partial \Omega\}$, and

$$
\begin{equation*}
\varphi(s)=c_{1} \log \left(1+c_{2} s\right) \tag{4}
\end{equation*}
$$

Denote

$$
\Omega_{s}=\{x \in \Omega: d(x)<s\} \quad \text { and } \Gamma_{s}=\{x \in \Omega: d(x)=s\} .
$$

If $x \in \Gamma_{s}$, for $s \leq s_{0}$ small enough, $-\Delta d(x)$ is the sum of the principal curvatures of Γ_{s} with respect to inwards pointing unit normal. Since Ω is strictly mean convex, we conclude that $\Delta d(x) \leq 0$ for $x \in \Omega_{s}$ for $s \leq s_{0}$ small enough.

Boundary gradient estimate: Idea

By choosing constants c_{1}, c_{2} in (4) properly, we conclude that w^{+}is a supersolution and w^{-}is a subsolution. Furthermore, $w^{ \pm}\left|\partial \Omega=u_{i}\right| \partial \Omega$, and

$$
w^{+} \geq \sup _{\partial \Omega} u_{i}, \quad w^{-} \leq \inf _{\partial \Omega} u_{i} \quad \text { on } \Gamma_{t_{0}}
$$

It follows that

$$
\sup _{\partial \Omega}\left|\nabla u_{i}\right| \leq \max \left\{\sup _{\partial \Omega}\left|\nabla w^{+}\right|, \sup _{\partial \Omega}\left|\nabla w^{-}\right|\right\} \leq c<\infty
$$

for the solution $u_{i} \in C^{2, \alpha}(\bar{\Omega})$, with $u_{i}\left|\partial \Omega=t_{i} \psi\right| \partial \Omega$.

Interior gradient estimates

I will sketch the proof(s) of the following gradient estimate(s):

Lemma [Rosenberg-Schulze-Spruck]

Let $\Omega \Subset M$ be a relatively compact open set and let $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ be a solution to the minimal graph equation $\mathcal{M}[u]=0$ in Ω. Then

$$
\sup _{\Omega} \sqrt{1+|\nabla u|^{2}} \leq \sup _{\Omega} e^{-\alpha u} \cdot \sup _{\partial \Omega}\left(e^{\alpha u} \sqrt{1+|\nabla u|^{2}}\right)
$$

where

$$
\alpha^{2}=\sup \left\{\max \{-\operatorname{Ric}(\gamma, \gamma), 0\}: \gamma \in T_{p} M,|\gamma|=1, p \in \Omega\right\}
$$

Interior gradient estimates

For the next lemma, suppose that $\Omega \Subset M$ is a relatively compact open set, $x \in \Omega$, and $B(x, \rho) \subset \Omega$, where $\rho<\operatorname{inj}(x)$, the injectivity radius of M at x.

Lemma [Spruck]

Let $u \in C^{3}(\Omega)$ be a non-negative solution of the mean curvature equation

$$
\operatorname{div} \frac{\nabla u(y)}{\sqrt{1+|\nabla u(y)|^{2}}}=H(y)
$$

in Ω. Then

$$
\sqrt{1+|\nabla u(x)|^{2}} \leq 32 \max \left\{1,(u(x) / \rho)^{2}\right\} e^{16 C u(x)} e^{16(u(x) / \rho)^{2}}
$$

for a constant C independent of u, but depending on the C^{1}-norm of H, on a lower bound for the sectional curvatures of M, and on an upper bound for Δd^{2} on Ω.

"Bochner-type" formula

Both lemmas are proved by applying maximum principle to a subsolution of an elliptic PDE. For that purpose, we need the following "Bochner-type" formula.

Theorem

Let M^{m} be a Riemannian manifold and let $N=M^{m} \times \mathbb{R}$ be equipped with the product structure. Let E_{m+1} be the unit vector field such that

$$
E_{m+1}(p, t)=\frac{\partial}{\partial t} \quad \forall(p, t) \in N .
$$

Let $\Sigma \subset N$ be an m-dimensional (smooth) hypersurface with induced structure, η a smooth unit normal vector field to Σ, and define $f(x)=\left\langle\eta_{x}, E_{m+1}(x)\right\rangle$ for $x \in \Sigma$. Then

$$
\Delta f=\Delta^{\Sigma} f=-\left\langle E_{m+1}^{\top}, \nabla h\right\rangle-\left(\widetilde{\operatorname{Ric}}(\eta)+\|\mathrm{B}\|^{2}\right) f,
$$

"Bochner-type" formula

where $h=\langle H, \eta\rangle$ is the scalar mean curvature of Σ (w.r.t. η),
$\nabla h=\nabla^{\Sigma} h$ its gradient, $\|\mathrm{B}\|^{2}$ the squared norm of B , and Ric the Ricci curvature on N.

Remarks

(1)

$$
\|\mathrm{B}\|^{2}=\sum_{i, j=1}^{m}\left|\mathrm{~B}\left(E_{i}, E_{j}\right)\right|^{2}=\sum_{i=1}^{m} \kappa_{i}^{2}
$$

where E_{1}, \ldots, E_{m} is a (local) orthonormal frame on Σ and κ_{i} 's are the principal curvatures.
(2) $f(x)=\left\langle\eta_{x}, E_{m+1}(x)\right\rangle$ is the "vertical (\mathbb{R}-)component" of η_{x}.

"Bochner-type" formula

Corollary

Suppose that Σ has a constant mean curvature. Then

$$
\Delta f=-\left(\widetilde{\operatorname{Ric}}(\eta)+\|\mathrm{B}\|^{2}\right) f
$$

Remark

If Σ is the graph of a solution $u: \Omega \rightarrow \mathbb{R}$ of the minimal graph equation in $\Omega \subset M$, then $h \equiv 0$ and

$$
f=\frac{1}{\sqrt{1+\left|\nabla^{M} u\right|^{2}}}
$$

Proof of the "Bochner-type" formula

Fix $x \in \Sigma$ and let $E_{1}(x), \ldots, E_{m}(x)$ be an orthonormal basis of $T_{x} \Sigma$ consisting of the eigenvectors of the Weingarten map $L: T_{x} \Sigma \rightarrow T_{x} \Sigma$, with eigenvalues κ_{i}. Extend $E_{1}(x), \ldots, E_{m}(x)$ to a geodesic frame E_{1}, \ldots, E_{m} in a neighborhood of x in Σ (thus $\left.\left(\nabla_{E_{j}} E_{i}\right)_{x}=0\right)$. Then

$$
\Delta f(x)=\sum_{i=1}^{m} E_{i} E_{i} f(x) .
$$

We compute at x :

$$
\begin{aligned}
\Delta f(x) & =\sum_{i=1}^{m} E_{i} E_{i} f=\sum_{i} E_{i} E_{i}\left\langle\eta, E_{m+1}\right\rangle \\
& =\sum_{i} E_{i}(\left\langle\bar{\nabla}_{E_{i}} \eta, E_{m+1}\right\rangle+\langle\eta, \underbrace{\bar{\nabla}_{E_{i}} E_{m+1}}_{=0}\rangle) \\
& =\sum_{i}\left\langle\bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{i}} \eta, E_{m+1}\right\rangle .
\end{aligned}
$$

Proof of the "Bochner-type" formula

Write

$$
E_{m+1}=\sum_{j=1}^{m} e_{j} E_{j}+f \eta, \quad f=\left\langle\eta, E_{m+1}\right\rangle
$$

Then

$$
\begin{aligned}
\Delta f(x) & =\sum_{i}\left\langle\bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{i}} \eta, E_{m+1}\right\rangle \\
& =\sum_{i, j} e_{j}\left\langle\bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{i}} \eta, E_{j}\right\rangle+\sum_{i} f\left\langle\bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{i}} \eta, \eta\right\rangle .
\end{aligned}
$$

We have at x :

$$
\begin{equation*}
\left\langle\bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{i}} \eta, E_{j}\right\rangle=\left\langle\bar{R}\left(E_{j}, E_{i}\right) E_{i}, \eta\right\rangle-E_{j}\left\langle\bar{\nabla}_{E_{i}} E_{i}, \eta\right\rangle \tag{5}
\end{equation*}
$$

and

Proof of the "Bochner-type" formula

$$
\begin{aligned}
& \left\langle\bar{\nabla}_{E_{i}} \overline{\bar{V}}_{E_{i}}, \eta\right\rangle=-\langle\bar{\nabla}_{E_{i}} \underbrace{\left.\left(L E_{i}\right), \eta\right\rangle}_{\epsilon \tau \Sigma} \\
& =-\underbrace{\langle\underbrace{\nabla_{E}\left(L E_{i}\right)}_{\in E_{i}}, \eta\rangle}_{=0}-\left\langle\left(\bar{\nabla}_{E_{i}}\left(L E_{i}\right)\right)^{\perp}, \eta\right\rangle \\
& =-\left\langle\mathrm{B}\left(E_{i}, L E_{i}\right), \eta\right\rangle=\underbrace{\left\langle\bar{\delta}_{E_{i}}, L E_{i}\right\rangle}_{=-L E_{i}} \\
& =-\left\langle L E_{i}, L E_{i}\right\rangle=-\kappa_{i}^{2} .
\end{aligned}
$$

So,

$$
\begin{aligned}
\Delta f(x) & =\sum_{i}\left\langle\bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{i}}, E_{m+1}\right\rangle \\
& =\sum_{i, j} e_{j}\left(\left\langle\bar{R}\left(E_{j}, E_{i}\right) E_{i}, \eta\right\rangle-E_{j}\left\langle\bar{\nabla}_{E_{i}} E_{i}, \eta\right\rangle\right)-f \sum_{i} \kappa_{i}^{2}
\end{aligned}
$$

Proof of the "Bochner-type" formula

$$
\begin{aligned}
& =\sum_{i}\left(\left\langle\bar{R}\left(E_{m+1}-f \eta, E_{i}\right) E_{i}, \eta\right\rangle-\left(\sum_{j} e_{j} E_{j}\right)\left\langle\bar{\nabla}_{E_{i}} E_{i}, \eta\right\rangle\right)-f\|\mathrm{~B}\|^{2} \\
& =\underbrace{\sum_{i}\left\langle\bar{R}\left(E_{m+1}, E_{i}\right) E_{i}, \eta\right\rangle}_{=\widetilde{\operatorname{Ric}}\left(E_{m+1}, \eta\right)=0}-f \underbrace{\sum_{i}\left\langle\bar{R}\left(\eta, E_{i}\right) E_{i}, \eta\right\rangle}_{=\widetilde{\operatorname{Ric}}(\eta)} \\
& -\sum_{i}\left(\sum_{j} e_{j} E_{j}\right)\left\langle\bar{\nabla}_{E_{i}} E_{i}, \eta\right\rangle-f\|\mathrm{~B}\|^{2} \\
& =-f \widetilde{\operatorname{Ric}}(\eta)-\left(\sum_{j} e_{j} E_{j}\right) \sum_{i}(\underbrace{\langle\underbrace{\nabla_{E_{i}} E_{i}}_{E_{i}}, \eta\rangle}_{=0}+\underbrace{\left\langle\left(\bar{\nabla}_{E_{i}} E_{i}\right)^{\perp}\right.}_{=\mathrm{B}\left(E_{i}, E_{i}\right)}, \eta\rangle)-f\|\mathrm{~B}\|^{2}
\end{aligned}
$$

Proof of the "Bochner-type" formula

$$
\begin{aligned}
& =-f \widetilde{\operatorname{Ric}}(\eta)-(\underbrace{\sum_{j} e_{j} E_{j}}_{=E_{m+1}^{\top}}) \underbrace{\langle H, \eta\rangle}_{=h}-f\|\mathrm{~B}\|^{2} \\
& =-f \widetilde{\operatorname{Ric}}(\eta)-\left\langle E_{m+1}^{\top}, \nabla h\right\rangle-f\|\mathrm{~B}\|^{2} .
\end{aligned}
$$

We are left with the Proof of (5):

$$
\left\langle\bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{i}} \eta, E_{j}\right\rangle=\left\langle\bar{R}\left(E_{j}, E_{i}\right) E_{i}, \eta\right\rangle-E_{j}\left\langle\bar{\nabla}_{E_{i}} E_{i}, \eta\right\rangle
$$

Proof of the "Bochner-type" formula

First we note that

$$
\begin{aligned}
E_{j}\left\langle\bar{\nabla}_{E_{i}} E_{i}, \eta\right\rangle & =\left\langle\bar{\nabla}_{E_{j}} \bar{\nabla}_{E_{i}} E_{i}, \eta\right\rangle+\langle\bar{\nabla}_{E_{i}} E_{i}, \underbrace{\bar{\nabla}_{E_{j}} \eta}_{\in T \Sigma}\rangle \\
& =\left\langle\bar{\nabla}_{E_{j}} \bar{\nabla}_{E_{i}} E_{i}, \eta\right\rangle+\langle\underbrace{\nabla_{E_{i}} E_{i}}_{=0 \text { at } x}, \bar{\nabla}_{E_{j}} \eta\rangle \\
& =\left\langle\bar{\nabla}_{E_{j}} \bar{\nabla}_{E_{i}} E_{i}, \eta\right\rangle
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\langle\bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{i}} \eta, E_{j}\right\rangle & =\left\langle\bar{R}\left(E_{j}, E_{i}\right) E_{i}, \eta\right\rangle-E_{j}\left\langle\bar{\nabla}_{E_{i}} E_{i}, \eta\right\rangle \\
\left\langle\bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{i}}, \eta, E_{j}\right\rangle & =\left\langle\bar{\nabla}_{E_{j}} \bar{\nabla}_{E_{i}} E_{i}, \eta\right\rangle-\left\langle\bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{j}} E_{i}, \eta\right\rangle \\
& -\langle\bar{\nabla} \underbrace{\left[E_{j} E_{i}\right]}_{=0} E_{i}, \eta\rangle-\left\langle\bar{\nabla}_{E_{j}} \bar{\nabla}_{E_{i}} E_{i}, \eta\right\rangle-
\end{aligned}
$$

Proof of the "Bochner-type" formula

$$
\begin{equation*}
\Longleftrightarrow\left\langle\bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{i}} \eta, E_{j}\right\rangle=-\left\langle\bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{j}} E_{i}, \eta\right\rangle \tag{6}
\end{equation*}
$$

Remains to verify (6).
Since $\left\langle E_{i}, \eta\right\rangle \equiv 0$ (along Σ), we have $E_{j}\left\langle E_{i}, \eta\right\rangle=0$. Hence

$$
\begin{aligned}
0 & \equiv\left\langle\bar{\nabla}_{E_{j}} E_{i}, \eta\right\rangle+\left\langle E_{i}, \bar{\nabla}_{E_{j}} \eta\right\rangle \\
& =\left\langle\bar{\nabla}_{E_{j}} E_{i}, \eta\right\rangle+\underbrace{\left\langle E_{i},-L E_{j}\right\rangle}_{\left\langle-L E_{i}, E_{j}\right\rangle} \\
& =\left\langle\bar{\nabla}_{E_{j}} E_{i}, \eta\right\rangle+\left\langle E_{j}, \bar{\nabla}_{E_{i}} \eta\right\rangle
\end{aligned}
$$

along Σ.
Therefore

$$
\begin{aligned}
0 & =E_{i}\left(\left\langle\bar{\nabla}_{E_{j}} E_{i}, \eta\right\rangle+\left\langle E_{j}, \bar{\nabla}_{E_{i}} \eta\right\rangle\right) \\
& =\left\langle\bar{\nabla}_{E}, \bar{\nabla}_{\left.E_{\text {Minimal submanifodss }}, E_{i}\right\rangle}^{\text {elsinki) }}+\left\langle\bar{\nabla}_{F}, \bar{\nabla}_{E \cdot} \cdot \eta\right\rangle\right.
\end{aligned}
$$

Proof of the "Bochner-type" formula

$$
\begin{aligned}
& =\left\langle\bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{j}} E_{i}, \eta\right\rangle+\langle\underbrace{\nabla_{E_{j}} E_{i}}_{=0 \text { at } x}+\left(\bar{\nabla}_{E_{j}} E_{i}\right)^{\perp}, \underbrace{-L E_{i}}_{\in T \Sigma}\rangle \\
& +\langle\underbrace{\nabla_{E_{i}} E_{j}}_{=0 \text { at } x}+\left(\bar{\nabla}_{E_{i}} E_{j}\right)^{\perp}, \underbrace{-L E_{i}}_{\in T \Sigma}\rangle+\left\langle E_{j}, \bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{i}} \eta\right\rangle \\
& =\left\langle\bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{j}} E_{i}, \eta\right\rangle+\left\langle E_{j}, \bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{i}} \eta\right\rangle
\end{aligned}
$$

So, we have proved:

$$
\Delta^{\Sigma} f=-\left\langle E_{m+1}^{\top}, \nabla h\right\rangle-\left(\widetilde{\operatorname{Ric}}(\eta)+\|\mathrm{B}\|^{2}\right) f,
$$

where $f=\left\langle\eta, E_{m+1}\right\rangle$.

Proof of Rosenberg-Schulze-Spruck estimate

Let's recall:

Lemma [Rosenberg-Schulze-Spruck]

Let $\Omega \Subset M$ be a relatively compact open set and let $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ be a solution to the minimal graph equation $\mathcal{M}[u]=0$ in Ω. Then

$$
\begin{equation*}
\sup _{\Omega} \sqrt{1+|\nabla u|^{2}} \leq \sup _{\Omega} e^{-\alpha u} \cdot \sup _{\partial \Omega}\left(e^{\alpha u} \sqrt{1+|\nabla u|^{2}}\right) \tag{7}
\end{equation*}
$$

where

$$
\alpha^{2}=\sup \left\{\max \{-\operatorname{Ric}(\gamma, \gamma), 0\}: \gamma \in T_{p} M,|\gamma|=1, p \in \Omega\right\}
$$

Idea of the proof
Write the Riemannian metric of M (locally) as

$$
\left.d s^{2}=\sigma_{i j} d x^{i} d x^{j} \quad \text { (Einstein summation }\right)
$$

Proof of Rosenberg-Schulze-Spruck estimate

Corresponding local coordinate frame on $\Sigma=\Sigma_{u}$ is then given by

$$
X_{i}=\partial_{i}+u_{i} \partial_{t}, \quad u_{i}=\frac{\partial u}{\partial x_{i}}, u(x, t):=u(x), x \in \Omega
$$

Furthermore, the unit normal field (to Σ) can be written as

$$
\eta=\frac{1}{W}\left(-u^{i} \partial_{i}+\partial_{t}\right), u^{i}=\sigma^{i j} u_{j}, W:=\sqrt{1+|\nabla u|^{2}}
$$

So, the induced Riem. metric (from $M \times \mathbb{R}$) on Σ is

$$
\begin{aligned}
d s_{\Sigma}^{2} & =g_{i j} d \tau^{i} d \tau^{j}, \quad d \tau^{i}\left(X_{j}\right)=\delta_{i j} \\
g_{i j} & =\left\langle X_{i}, X_{j}\right\rangle=\sigma_{i j}+u_{i} u_{j} \\
g^{i j} & =\sigma^{i j}-\frac{u^{i} u^{j}}{W^{2}}
\end{aligned}
$$

The minimal graph equation in nondivergence form is then

$$
\frac{1}{W} g^{i j}\left(u_{i j}-\Gamma_{i j}^{k} u_{k}\right)=\frac{1}{W} g^{i j} D_{i} D_{j} u=0
$$

Proof of Rosenberg-Schulze-Spruck estimate

Recall the "Bochner" formula for $H \equiv 0$.

$$
\Delta^{\Sigma}\left(\frac{1}{W}\right)=-\left(\widetilde{\operatorname{Ric}}(\eta)+\|\mathrm{B}\|^{2}\right) \frac{1}{W}
$$

We have

$$
\begin{equation*}
\widetilde{\operatorname{Ric}}(\eta)=\left(1-W^{-2}\right) \operatorname{Ric}^{M}(\gamma), \quad \gamma=\frac{\eta^{M}}{\left|\eta^{M}\right|} \tag{8}
\end{equation*}
$$

where η^{M} is the "TM-component" of $\eta \in T M \oplus \mathbb{R}$. [Note: If η is vertical ($\eta^{M}=0$), then $W=1$ and (8) holds trivially.]
Using (8), the standard formula

$$
\Delta(g \circ \varphi)=\left(g^{\prime} \circ \varphi\right) \Delta \varphi+\left(g^{\prime \prime} \circ \varphi\right)|\nabla \varphi|^{2}
$$

and the "Bochner" formula, we get

$$
\Delta^{\Sigma} W=\frac{2\left|\nabla^{\Sigma} W\right|^{2}}{W}+W\|\mathrm{~B}\|^{2}+W\left(1-W^{-2}\right) \operatorname{Ric}^{M}(\gamma)
$$

Proof of Rosenberg-Schulze-Spruck estimate

Define (on $\Omega \times \mathbb{R}$) a function $h(x)=\varphi(x) W(x)$, depending only on x-variable of points $(x, t) \in \Omega \times \mathbb{R}$, with

$$
\varphi=e^{\alpha u}, \alpha \geq 0
$$

and an elliptic second order operator

$$
\begin{aligned}
L h & :=\Delta^{\Sigma} h-2 g^{i j} \frac{X_{i} W}{W} X_{j} h=\Delta^{\Sigma} h-2 g^{i j} \frac{W_{i}}{W} h_{j} \\
& =\varphi\left(\Delta^{\Sigma} W-\frac{2}{W}\left|\nabla^{\Sigma} W\right|^{2}\right)+W \Delta^{\Sigma} \varphi \\
& =W\left(\Delta^{\Sigma} \varphi+\varphi\left(\|\mathrm{B}\|^{2}+\left(1-W^{-2}\right) \operatorname{Ric}^{M}(\eta)\right)\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
\Delta^{\Sigma} \varphi & =\Delta^{\Sigma}\left(e^{\alpha u}\right)=\alpha e^{\alpha u} \underbrace{\Delta^{\Sigma} u}_{=0}+\alpha^{2} e^{\alpha u}\left|\nabla^{\Sigma} u\right|^{2}=\alpha^{2} e^{\alpha u}\left|\nabla^{\Sigma} u\right|^{2} \\
& =\alpha^{2} e^{\alpha u}\left(1-W^{-2}\right),
\end{aligned}
$$

Proof of Rosenberg-Schulze-Spruck estimate

we get

$$
L h=h\left(\|\mathrm{~B}\|^{2}+\left(1-\boldsymbol{W}^{-2}\right)\left(\alpha^{2}+\operatorname{Ric}^{M}(\gamma)\right)\right) .
$$

Choosing α as in the claim, i.e.

$$
\alpha^{2}=\sup \left\{\max \{-\operatorname{Ric}(\gamma, \gamma), 0\}: \gamma \in T_{p} M,|\gamma|=1, p \in \Omega\right\}
$$

we obtain

$$
L h \geq 0, \quad \text { i.e. } h=e^{\alpha u} W \text { is a subsolution. }
$$

By the Hopf maximum principle

$$
\sup _{\Omega} e^{\alpha u} W=\sup _{\partial \Omega} e^{\alpha u} W
$$

and the estimate (7) follows.
The proof of the gradient estimate due to Spruck follows similar lines.

