Homotopy and vector bundles Exercise 4 (2.10.2014)

1. Give examples of spaces (X, x_0) , (Y, y_0) and functions $f: (X, x_0) \to (Y, y_0)$ such that

- a) f is injective, f_* is not injective
- b) f is not injective, f_* is injective

c) f is surjective, f_* is not surjective

d) f is not surjective, f_* is surjective.

2. Give an example of a covering map $p: (X, x_0) \to (Y, y_0)$ and paths $\alpha, \beta \in \Omega(Y, y_0)$ such that $\tilde{\alpha}(1) = \tilde{\beta}(1)$, but $\alpha \not\sim \beta$.

3. Let X be a topological space and $A \subset X$. We say that A is a deformation retract of X, if there exists a homotopy $H: X \times I \to X$ such that

$$H(x,0) = x$$
 jokaisella $x \in X$,
 $H(x,1) \in A$ jokaisella $x \in X$

and

$$H(a, 1) = a$$
 jokaisella $a \in A$.

We say that A is a strong deformation retract of X, if there exists a homotopy $H: X \times I \to X$ such that

$$H(x,0) = x$$
 jokaisella $x \in X$,
 $H(x,1) \in A$ jokaisella $x \in X$

and

$$H(a,t) = a$$
 jokaisella $a \in A, t \in I$.

a) Prove: if A is a deformation retract of X, then A is a retract of X.

b) Prove: if A is a deformation retract of X, then $A \simeq X$.

c) Prove that S^{n-1} is a strong deformation retract of $\mathbb{R}^n \setminus \{0\}$.

d) Give an example of a situation where A is a deformation retract, but not a strong deformation retract of X.

4. Let X be a topological space, $f, g: X \to S^n$ continuous maps and $f(x) + g(x) \neq \overline{0}$ for every $x \in X$. Prove that $f \simeq g$.

5. Suppose that $p: X \to Y$ is a covering map and Y is path connected. Prove that every fiber $p^{-1}\{y\}$ has the same cardinality. [Hint: use path lifting]

6. Let $f: \overline{B}^2 \to \overline{B}^2$ be a homeomorphism. Prove that $fB^2 = B^2$ and $fS^1 = S^1$. Deduce from this that \overline{B}^2 is not a homogeneous space. [Hint: Remove one point]

(A space X is homogeneous, if for every pair x, y of points of X there exists a homeomorphism $X \to X$ mapping x to y.)