Geometric measure theory, Exercise 7, 6.11.2014

1. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has approximate limit $a \in \mathbb{R}$ at a point $x \in \mathbb{R}^{n}$, if for every $\varepsilon>0$,

$$
\lim _{r \rightarrow 0} \frac{\mathcal{L}^{n}(\{y \in B(x, r):|f(y)-a|>\varepsilon\})}{\alpha(n) r^{n}}=0
$$

As before $\alpha(n)=\mathcal{L}^{n}(B(0,1))$. Show that if f is Lebesgue measurable, this holds if an only if there is a Lebesgue measurable set $A \subset \mathbb{R}^{n}$ such that x is a density point of A, that is,

$$
\lim _{r \rightarrow 0} \frac{\mathcal{L}^{n}(A \cap B(x, r))}{\alpha(n) r^{n}}=1,
$$

and

$$
\lim _{y \rightarrow x, y \in A} f(y)=a .
$$

2. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is approximately continuous at a point $x \in \mathbb{R}^{n}$, if it has approximate limit $f(x)$ at x. Show that any Lebesgue measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is approximately continuous almost everywhere.
Suggestion: use Lusin's theorem and the density point theorem.
It can also be shown that the converse holds: if f is approximately continuous almost everywhere, then it is measurable. Think about this.
3. Find infinitely many explicit (perhaps described from a picture) lines $L_{1}, L_{2}, \cdots \in$ $G(2,1)$ for which $\mathcal{H}^{1}\left(P_{L_{j}}(C(1 / 4))\right)=0$, where $C(1 / 4)$ is the Cantor set of Example 6.7.
4. Let $\Gamma \subset \mathbb{R}^{2}$ be a rectifiable curve and $A \subset \Gamma$ with $\mathcal{H}^{1}(A)>0$. Prove that there can exist at most one line $L \in G(2,1)$ such that $\mathcal{H}^{1}\left(P_{L}(A)\right)=0$.
Suggestion: use the fact that Γ has an ordinary tangent line at almost all of its points and consider subsets of A where these tangent lines are very close to each other.
5. Let $A \subset \mathbb{R}^{2}$ be \mathcal{H}^{1} measurable with $\mathcal{H}^{1}(A)<\infty$. Prove that A is purely 1 unrectifiable if and only if there are two different lines $L_{1}, L_{2} \in G(2,1)$ for which $\mathcal{H}^{1}\left(P_{L_{1}}(A)\right)=\mathcal{H}^{1}\left(P_{L_{2}}(A)\right)=0$.
