Geometric measure theory, Exercise 6, 30.10.2014

1. Prove that if $A \subset \mathbb{R}^{n}$ and $a \in \mathbb{R}^{n}$ with $\Theta^{*, 1}(A, a)>0$, then A can have at most one 1 dimensional approximate tangent line at a.
2. Construct a set $A \subset \mathbb{R}^{3}$ with $\Theta^{*, 2}(A, a)>0$ such that every 2 dimensional plane containing the x_{1}-axis is an approximate tangent 2 plane for A at the origin.
3. Suppose that $A \subset \mathbb{R}^{n}$ and for some positive number $c, \mathcal{H}^{m}(A \cap B(a, r))>c r^{m}$ for $a \in A, 0<r<1$. Show that every approximate tangent m plane for A is an ordinary tangent m plane for A.
4. If $a \in \mathbb{R}^{2}$ and $S \subset S^{1}$ is an arc on the unit circle, define the one-sided sector

$$
Y(a, S)=\{a+t e: t>0, e \in S\} .
$$

Prove the following analogue of Lemma 7.4 for one-sided sectors: Suppose $E \subset$ \mathbb{R}^{2} and $S \subset S^{1}$ is an arc. If

$$
E \cap Y(a, S)=\varnothing \text { for all } a \in E,
$$

then E is 1 rectifiable.
5. Let $C \subset \mathbb{R}^{2}$ be compact, $\varepsilon>0$ and $E=\left\{x \in \mathbb{R}^{2}: d(x, C)=\varepsilon\right\}$. Prove that E is 1 rectifiable.
Hint: The previous exercise might help.

