EVOLUTION AND THE THEORY OF GAMES

STEFAN GERITZ & BRITTANY ROSE, HELSINKI, 2014

Exercises 07-11-2011

5. Find all Nash equilibria (mixed and pure) of the Hawk-Dove game for R > C and for R < C:

	Н	D
Η	(R-C)/2, $(R-C)/2$	R, 0
D	0, R	R/2 , $R/2$

6. Suppose that (\hat{x}, \hat{y}) is a Nash equilibrium. Show that $\pi_1(x, \hat{y}) = \pi_1(\hat{x}, \hat{y})$ for every pure strategy x in the support of \hat{x} .

7. Show that every dominating strategy solution is a Nash equilibrium, but that the reverse is not necessarily true.

8. Show that if $x \in \mathbb{X}$ is a *strictly* dominated pure strategy and $(\hat{x}, \hat{y}) \in \mathbb{X} \times \mathbb{Y}$ is a Nash equilibrium, then x cannot be in the support of \hat{x} . Show by example that this conclusion need not be true if x is only *weakly* dominated, e.g., as for the following payoff matrix:

	У1	y_2	У <u>з</u>
\mathbf{x}_1	3, 2	3, 0	2, 2
\mathbf{x}_2	1, 0	3, 3	0, 3
\mathbf{X}_3	0, 2	0, 0	3, 2