1. Show that on the 2-dimensional torus $T^{2}=S^{1} \times S^{1}$ one can choose a complete system of coordinates such that the Christoffel symbols vanish identically on each coordinate patch.
2. Show that $f^{*}(d \omega)=d\left(f^{*} \omega\right)$ for any form ω on a manifold N and a smooth $\operatorname{map} f: M \rightarrow N$.
3. We define Christoffel symbols on the unit sphere S^{2} in terms of spherical coordinates (θ, ϕ), away from the poles $\theta=0, \pi$, as

$$
\Gamma_{\phi \phi}^{\theta}=-\frac{1}{2} \sin 2 \theta \text { and } \Gamma_{\theta \phi}^{\phi}=\Gamma_{\phi \theta}^{\phi}=\cot \theta
$$

and all the other symbols equal to zero. Show that there is a globally defined covariant differentiation ∇ corresponding to these Christoffel symbols.
4. Show that the equations

$$
\frac{d Y^{i}(s)}{d s}+\Gamma_{j k}^{i}(x(s)) \frac{d x^{j}(s)}{d s} Y^{k}(x(s))=0
$$

for parallel transport are consistent with coordinate transformations.
5. Compute directly from the definition the transformation rule for components of the torsion tensor in local coordinate transformations.

