Homework exercises, set 3

1. Show that $f_{*}[X, Y]=\left[f_{*} X, f_{*} Y\right]$.
2. Let X, Y be a pair of vector fields and ω, η differential forms on a manifold. Show that $i_{[X, Y]} \omega=\mathcal{L}_{X}\left(i_{Y} \omega\right)-i_{Y}\left(\mathcal{L}_{X} \omega\right)$ and that $i_{X}(\omega \wedge \eta)=i_{X} \omega \wedge \eta+(-1)^{k} \omega \wedge$ $i_{X} \eta$ when ω is a k-form. Furthermore, observe that $i_{X}^{2}=0$ and $\mathcal{L}_{X} i_{X}=i_{X} \mathcal{L}_{X}$.
3. Let $X, Y \in \mathcal{D}^{1}(M)$ and $\omega \in \Omega(M)$. Show that $\mathcal{L}_{X}\left(\mathcal{L}_{Y} \omega\right)-\mathcal{L}_{Y}\left(\mathcal{L}_{X} \omega\right)=$ $\mathcal{L}_{[X, Y]} \omega$. Hint: Do first the case $\omega \in \Omega^{1}(M)$ and then generalize to forms of arbitrary degree.
4. Prove the relation $\mathcal{L}_{X}=d \circ i_{X}+i_{X} \circ d$.
5. Use the result of exercise 4 to show that Lie derivative and exterior differentiation commute.
6. Let $M=\mathbb{R}^{2} \backslash\{0\}$ and $\omega=\frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$. Show that ω is closed. Define $f(x, y)=\operatorname{arc} \tan (y / x)$. Compute $d f$. Is ω exact?
