Homework exercises, set 2

1. Consider rotations around different coordinate axis in \mathbb{R}^3 . They form 1parameter groups acting on \mathbb{R}^3 and define flows for three different vector fields in \mathbb{R}^3 . Write down the vector fields as first order linear differential operators.

2. In \mathbb{R}^3 we can parametrize 2-forms with a help of a (pseudo) vector. Using this parametrization write explicitly the wedge product of a 1-form and a 2-form.

3. Show that the wedge product $f \wedge g$ of $f \in \Omega^k(V)$ and $g \in \Omega^l(V)$ is really in $\Omega^{k+l}(V)$.

4. With the notation of (3), show that $f \wedge g = (-1)^{kl}g \wedge f$.

5. Prove that the wedge product is associative.

6. Prove the formula

$$(d\omega)(X_1, X_2, \dots, X_{k+1}) = \sum_i (-1)^i X_i \cdot \omega(X_1, \dots, \hat{X}_i, \dots, X_{k+1}) + \sum_{i < j} (-1)^{i+j} \omega([X_i, X_j], X_1, \dots, \hat{X}_i, \dots, \hat{X}_j, \dots, X_{k+1})$$

for the exterior derivative of a k form, starting from the definition in terms of local coordinates. Here the hat means that the corresponding argument is deleted.