Homework exercises, set 2

1. Consider rotations around different coordinate axis in \mathbb{R}^{3}. They form 1parameter groups acting on \mathbb{R}^{3} and define flows for three different vector fields in \mathbb{R}^{3}. Write down the vector fields as first order linear differential operators.
2. In \mathbb{R}^{3} we can parametrize 2 -forms with a help of a (pseudo) vector. Using this parametrization write explicitly the wedge product of a 1 -form and a 2 -form.
3. Show that the wedge product $f \wedge g$ of $f \in \Omega^{k}(V)$ and $g \in \Omega^{l}(V)$ is really in $\Omega^{k+l}(V)$.
4. With the notation of (3), show that $f \wedge g=(-1)^{k l} g \wedge f$.
5. Prove that the wedge product is associative.
6. Prove the formula

$$
\begin{aligned}
(d \omega)\left(X_{1}, X_{2}, \ldots, X_{k+1}\right) & =\sum_{i}(-1)^{i} X_{i} \cdot \omega\left(X_{1}, \ldots, \hat{X}_{i}, \ldots, X_{k+1}\right) \\
& +\sum_{i<j}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{1}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{k+1}\right)
\end{aligned}
$$

for the exterior derivative of a k form, starting from the definition in terms of local coordinates. Here the hat means that the corresponding argument is deleted.

