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CHAPTER 1 : DIFFERENTIABLE MANIFOLDS

1.1 The definition of a differentiable manifold

Let M be a topological space. This means that we have a family Ω of open sets

defined on M. These satisfy

(1) ∅,M ∈ Ω

(2) the union of any family of open sets is open

(3) the intersection of a finite family of open sets is open

We normally assume also the Hausdorff property: For any pair x, y of distinct points

there is a pair of nonoverlapping open sets U, V such that x ∈ U and y ∈ V. In

addition, we shall also assume that our manifolds are paracompact. This implies

the existence of locally finite partitions of unity which is needed in the integration

theory in Section 2.5. For finite dimensional manifolds the paracompactness is not

considered to be a serious restriction; however, there are lots of infinite dimensional

manifolds which are not paracompact.

In any topological space one can define the notion of convergence. A sequence

x1, x2, x3, . . . converges towards x ∈M if any open set U such that x ∈ U contains

all the points xn except a finite set.

The basic example of a topological space is Rn equipped with the Euclidean

norm ||x||2 = x2
1 + x2

2 + · · · + x2
n for x = (x1, . . . , xn). A set U ⊂ Rn is open if for

any x ∈ U there is a positive number ε = ε(x) such that y ∈ U if ||x− y|| < ε. The

convergence is then the usual one: x(n) → x if for any ε > 0 there is an integer nε
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such that ||x− x(n)|| < ε for n > nε.

Actually, all the spaces we study in (finite dimensional) differential geometry are

locally homeomorphic to Rn.

Definition. A topological space M is called a smooth manifold of dimension n if

1) there is a family of open sets Uα (with α ∈ Λ) such that the union of all Uα’s

is equal to M , 2) for each α there is a homeomorphism φα : Uα → Vα ⊂ Rn such

that 3) the coordinate transformations φα ◦ φ−1
β on their domains of definition are

smooth functions in Rn.

Example 1 Rn is a smooth manifold. We need only one coordinate chart U = M

with φ : U → Rn the identity mapping.

Example 2 The same as above, but take M ⊂ Rn any open set.

Example 3 TakeM = S1, the unit circle. Set U equal to the subset parametrized

by the polar angle−0.1 < φ < π+0.1 and V equal to the set π < φ < 2π. Then U∩V

consists of two intervals π < φ < π + 0.1 and −0.1 < φ < 0 ∼ 2π − 0.1 < φ < 2π.

The coordinate transformation is the identity map φ 7→ φ on the former and the

translation φ 7→ φ+ 2π on the latter interval.

Exercise Define a manifold structure on the unit sphere S2.

Example 4 The group GL(n,R) of invertible real n × n matrices is a smooth

manifold as an open subset of Rn2
. It is an open subset since it is a complement of

the closed surface determined by the polynomial equation detA = 0.

1.2 Differentiable maps

Let M,N be a pair of smooth manifolds (of dimensions m,n) and f : M → N a

continuous map. If (U, φ) is a local coordinate chart on M and (V, ψ) a coordinate

chart on N then we have a map ψ ◦ f ◦ φ−1 from some open subset of Rm to an

open subset of Rn. If the composite map is smooth for any pair of coordinate charts

we say that f is smooth. The reader should convince himself that the condition

of smoothness for f does not depend on the choice of coordinate charts. From

elementary results in differential calculus it follows that if g : N → P is another

smooth map then also g ◦ f : M → P is smooth.

Note that we can write the map ψ◦f◦φ−1 as y = (y1, . . . , yn) = (y1(x1, . . . , xm), . . .
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. . . , yn(x1, . . . , xm)) in terms of the Cartesian coordinates. Smoothness of f simply

means that the coordinate functions yi(x1, x2, . . . , xm) are smooth functions.

Remark In a given topological space M one can often construct different in-

equivalent smooth structures. That is, one might be able to construct atlases

{(Uα, φα)} and {(Vα, ψα)} such that both define a structure of smooth manifold,

say MU and MV , but the manifolds MU ,MV are not diffeomorphic (see the defi-

nition below). A famous example of this phenomen are the spheres S7, S11 (John

Milnor, 1956). On the sphere S7 there are exactly 28 inequivalent differentiable

structures! On the Euclidean space R4 there is an infinite number of differentiable

structures (S.K. Donaldson, 1983).

A diffeomorphism is a one-to-one smooth map f : M → N such that its inverse

f−1 : N → M is also smooth. The set of diffeomorphisms M → M forms a group

Diff(M). A smooth map f : M → N is an immersion if at each point p ∈ M the

rank of the derivative dh
dx is equal to the dimension of M. Here h = ψ ◦ f ◦φ−1 with

the notation as before. Finally f : M → N is an embedding if f is injective and it

is an immersion; in that case f(M) ⊂ N is an embedded submanifold.

A smooth curve on a manifold M is a smooth map γ from an open interval of

the real axes to M. Let p ∈ M and (U, φ) a coordinate chart with p ∈ U. Assume

that curves γ1, γ2 go through p, let us say p = γi(0). We say that the curves are

equivalent at p, γ1 ∼ γ2, if

d

dt
φ(γ1(t))|t=0 =

d

dt
φ(γ2(t))|t=0.

This relation does not depend on the choice of (U, φ) as is easily seen by the help

of the chain rule:

d

dt
ψ(γ1(t))− d

dt
ψ(γ2(t)) = (ψ ◦ φ−1)′ ·

(
d

dt
φ(γ1(t))− d

dt
φ(γ2(t))

)
= 0

at the point t = 0. Clearly if γ1 ∼ γ2 and γ2 ∼ γ3 at the point p then also γ1 ∼ γ3

and γ2 ∼ γ1. Trivially γ ∼ γ for any curve γ through p so that ” ∼ ” is an

equivalence relation.

A tangent vector v at a point p is an equivalence class of smooth curves [γ]

through p. For a given chart (U, φ) at p the equivalence classes are parametrized by

the vector
d

dt
φ(γ(t))|t=0 ∈ Rn.
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Thus the space TpM of tangent vectors v = [γ] inherits the natural linear structure

of Rn. Again, it is a simple exercise using the chain rule that the linear structure

does not depend on the choice of the coordinate chart.

We denote by TM the disjoint union of all the tangent spaces TpM. This is

called the tangent bundle of M. We shall define a smooth structure on TM. Let

p ∈M and (U, φ) a coordinate chart at p. Let π : TM →M the natural projection,

(p, v) 7→ p. Define φ̃ : π−1(U)→ Rn × Rn as

φ̃(p, [γ]) = (φ(p),
d

dt
φ(γ(t))|t=0).

If now (V, ψ) is another coordinate chart at p then

(φ̃ ◦ ψ̃−1)(x, v) = (φ(ψ−1(x)), (φ ◦ ψ−1)′(x)v),

by the chain rule. It follows that φ̃ ◦ ψ̃−1 is smooth in its domain of definition and

thus the pairs (π−1(U), φ̃) form an atlas on TM , giving TM a smooth structure.

Example 1 If M is an open set in Rn then TM = M × Rn.

Example 2 Let M = S1. Writing z ∈ S1 as a complex number of unit modulus,

consider curves through z written as γ(t) = zeivt with v ∈ R. This gives in fact a

parametrization for the equivalence classes [γ] as vectors in R. The tangent spaces

at different points z1, z2 are related by the phase shift z1z
−1
2 and it follows that

TM is simply the product S1 × R.

Example 3 In general, TM 6= M × Rn. The simplest example for this is the

unit sphere M = S2. Using the spherical coordinates, for example, one can identify

the tangent space at a given point (θ, φ) as the plane R2. However, there is no

natural way to identify the tangent spaces at different points on the sphere; the

sphere is not parallelizable. This is the content of the famous hairy ball theorem.

Any smooth vector field on the sphere has zeros. (If there were a globally nonzero

vector field on S2 we would obtain a basis in all the tangent spaces by taking a

(oriented) unit normal vector field to the given vector field. Together they would

form a basis in the tangent spaces and could be used for identifying the tangent

spaces as a standard R2.)

Exercise The unit 3-sphere S3 can be thought of complex unitary 2×2 matrices

with determinant =1. Use this fact to show that the tangent bundle is trivial,

TS3 = S3 × R3.
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Let f : M → N be a smooth map. We define a linear map

Tpf : TpM → Tf(p)N, as Tpf · [γ] = [f ◦ γ],

where γ is a curve through the point p. This map is expressed in terms of local

coordinates as follows. Let (U, φ) be a coordinate chart at p and (V, ψ) a chart

at f(p) ∈ N. Then the coordinates for [γ] ∈ TpM are v = d
dtφ(γ(t))|t=0 and the

coordinates for [f ◦ γ] ∈ Tf(p)N are w = d
dtψ(f(γ(t)))|t=0. But by the chain rule,

w = (ψ ◦ f ◦ φ−1)′(x) · d
dt
φ(γ(t))|t=0 = (ψ ◦ f ◦ φ−1)′(x) · v

with x = φ(p). Thus in local coordinates the linear map Tpf is the derivative of

ψ ◦ f ◦ φ−1 at the point x. Putting together all the maps Tpf we obtain a map

Tf : TM → TN.

Proposition. The map Tf : TM → TN is smooth.

Proof. Recall that the coordinate charts (U, φ), (V, ψ) on M,N, respectivly, lead to

coordinate charts (π−1(U), φ̃) and (π−1(V ), ψ̃) on TM, TN. Now

(ψ̃ ◦ Tf ◦ φ̃−1)(x, v) = ((ψ ◦ f ◦ φ−1)(x), (ψ ◦ f ◦ φ−1)′(x)v)

for (x, v) ∈ φ̃(π−1(U)) ∈ Rm×Rm. Both component functions are smooth and thus

Tf is smooth by definition.

If f : M → N and g : N → P are smooth maps then g ◦ f : M → P is smooth

and

T (g ◦ f) = Tg ◦ Tf.

To see this, the curve γ through p ∈M is first mapped to f ◦ γ through f(p) ∈ N

and further, by Tg, to the curve g ◦ f ◦ γ through g(f(p)) ∈ P.

In terms of local coordinates xi at p, yi at f(p) and zi at g(f(p)) the chain rule

becomes the standard formula,

∂zi
∂xj

=
∑
k

∂zi
∂yk

∂yk
∂xj

.

1.3 Vector fields



DIFFERENTIAL GEOMETRY AND PHYSICS 7

We denote by C∞(M) the algebra of smooth real valued functions on M. A

derivation of the algebra C∞(M) is a linear map d : C∞(M)→ C∞(M) such that

d(fg) = d(f)g + fd(g)

for all f, g. Let v ∈ TpM and f ∈ C∞(M). Choose a curve γ through p representing

v. Set

v · f =
d

dt
f(γ(t))|t=0.

Clearly v : C∞(M)→ R is linear. Furthermore,

v · (fg) =
d

dt
f(γ(t))|t=0g(γ(0)) + f(γ(0))

d

dt
g(γ(t))|t=0 = (v · f)g(p) + f(p)(v · g).

A vector field on a manifold M is a smooth distribution of tangent vectors on

M, that is, a smooth map X : M → TM such that X(p) ∈ TpM. From the

previous formula follows that a vector field defines a derivation of C∞(M); take

above v = X(p) at each point p ∈ M and the right- hand-side defines a smooth

function on M and the operation satisfies the Leibnitz’ rule.

We denote by D1(M) the space of vector fields on M. As we have seen, a vector

field gives a linear map X : C∞(M) → C∞(M) obeying the Leibnitz’ rule. Con-

versely, one can prove that any derivation of the algebra C∞(M) is represented by

a vector field.

One can develope an algebraic approach to manifold theory. In that the com-

mutative algebra A = C∞(M) plays a central role. Points in M correspond to

maximal ideals in the algebra A. Namely, any point p defines the ideal Ip ⊂ A

consisting of all functions which vanish at the point p.

The action of a vector field on functions is given in terms of local coordinates

x1, . . . , xn as follows. If v = X(p) is represented by a curve γ then

(X · f)(p) =
d

dt
f(γ(t))t=0 =

∑
k

∂f

∂xk

dxk
dt

(t = 0) ≡
∑
k

Xk(x)
∂f

∂xk
.

Thus a vector field is locally represented by the vector valued function (X1(x), . . . , Xn(x)).

In addition of being a real vector space, D1(M) is a left module for the algebra

C∞(M). This means that we have a linear left multiplication (f,X) 7→ fX. The

value of fX at a point p is simply the vector f(p)X(p) ∈ TpM.
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As we have seen, in a coordinate system xi a vector field defines a derivation

with local representation X =
∑
kXk

∂
∂xk

. In a second coordinate system x′k we

have a representation X =
∑
X ′k

∂
∂x′k

. Using the chain rule for differentiation we

obtain the coordinate transformation rule

X ′k(x′) =
∑
j

∂x′k
∂xj

Xj(x),

for x′k = x′k(x1, . . . , xn).

We shall denote ∂k = ∂
∂xk

and we use Einstein’s summation convention over

repeated indices,

Let X,Y ∈ D1(M). We define a new derivation of C∞(M), the commutator

[X,Y ] ∈ D1(M), by

[X,Y ]f = X(Y f)− Y (Xf).

We prove that this is indeed a derivation of C∞(M).

[X,Y ](fg) = X(Y (fg))− Y (X(fg)) = X(fY g + gY f)− Y (fXg + gXf)

= (Xf)(Y g) + fX(Y g) + (Xg)(Y f) + gX(Y f)− (Y f)(Xg)− fY (Xg)

− (Y g)(Xf)− gY (Xf) = f [X,Y ]g + g[X,Y ]f.

Writing X = Xk∂
k and Y = Yk∂

k we obtain the coordinate expression

[X,Y ]k = Xj∂
jYk − Yj∂jXk.

Thus we may view D1(M) simply as the space of first order linear partial dif-

ferential operators on M with the ordinary commutator of differential operators.

The commutator [X,Y ] is also called the Lie bracket on D1(M). It has the basic

properties

(1) [X,Y ] is linear in both arguments

(2) [X,Y ] = −[Y,X]

(3) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

The last property is called the Jacobi identity. A vector space equipped with a Lie

bracket satisfying the properties above is called a Lie algebra.

Other examples of Lie algebras:

Example 1 Any vector space with the bracket [X,Y ] = 0.
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Example 2 The angular momentum Lie algebra with basis L1, L2, L3 and

nonzero commutators [L1, L2] = L3 + cyclically permuted relations.

Example 3 The space of n×n matrices with the usual commutator of matrices,

[X,Y ] = XY − Y X.

Exercise Check the relations

[X, fY ] = f [X,Y ] + (Xf)Y, and [fX, Y ] = f [X,Y ]− (Y f)X

for X,Y ∈ D1(M) and f ∈ C∞(M).

Let f : M → N be a diffeomorphism and X ∈ D1(M). We can define a vector

field Y = f∗X on N by setting Y (q) = Tpf ·X(p) for q = f(p). In terms of local

coordinates,

Y = Yk
∂

∂yk
= Xj

∂yk
∂xj

∂

∂yk
.

In the case M = N this gives back the coordinate transformation rule for vector

fields.

Let X ∈ D1(M). Consider the differential equation

X(γ(t)) =
d

dt
γ(t)

for a smooth curve γ. In terms of local coordinates this equation is written as

Xk(x(t)) =
d

dt
xk(t), k = 1, 2, . . . , n.

By the theory of ordinary differential equations this system has locally, at a neigh-

borhood of an initial point p = γ(0), a unique solution. However, in general the

solution does not need to extend to −∞ < t < +∞ except in the case when M is a

compact manifold. The (local) solution γ is called an integral curve of X through

the point p.

The integral curves for a vector field X define a (local) flow on the manifold M.

This is a (local) map

f : R×M →M

given by f(t, p) = γ(t) where γ is the integral curve through p. We have the identity

(1) f(t+ s, p) = f(t, f(s, p)),
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which follows from the uniqueness of the local solution to the first order ordinary

differential equation. In coordinates,

d

dt
fk(t, f(s, x)) = Xk(f(t, f(s, x)))

and
d

dt
fk(t+ s, x) = Xk(f(t+ s, x)).

Thus both sides of (1) obey the same differential equation. Since the initial con-

ditions are the same, at t = 0 both sides are equal to f(0, f(s, x)) = f(s, x), the

solutions must agree.

Denoting ft(p) = f(t, p), observe that the map R → Diffloc(M), t 7→ ft, is a

homomorphism,

ft ◦ fs = ft+s.

Thus we have a one parameter group of (local) transformations ft on M. In the case

when M is compact we actually have globally globally defined transformations on

M.

Example Let X(r, φ) = (−r sinφ, r cosφ) be a vector field on M = R2. The

integral curves are solutions of the equations

x′(t) = −r(t) sinφ(t)

y′(t) = r(t) cosφ(t)

and the solutions are easily seen to be given by (x(t), y(t)) = (r0 cos(φ+φ0), r0 sin(φ+

φ0)), where the initial condition is specified by the constants φ0, r0. The one pa-

rameter group of tranformations generated by the vector field X is then the group

of rotations in the plane.

Further reading: M. Nakahara: Geometry, Topology and Physics, Institute of

Physics Publ. (1990), sections 5.1 - 5.3 . S. S. Chern, W.H. Chen, K.S. Lam:

Lectures on Differential Geometry, World Scientific Publ. (1999), Chapter 1.
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CHAPTER 2: DIFFERENTIAL FORMS

2.1 Multilinear forms

Let V be a vector space, dimV = n < ∞, over the field K = R or K = C. The

dual space V ∗ consists of all linear functions f : V → K and it is a vector space

under the usual addition and scalar multiplication of functions. If {e1, . . . , en} is a

basis of V then we can define a basis {f1, . . . , fn} of V ∗ by fi(ej) = δij . We denote

Ω1(V ) = V ∗.

Next we define Ω2(V ) = V ∗ ∧ V ∗ as the space of antisymmetric functions f :

V × V → K which are linear in both arguments. Ω2(V ) is a vector space of

dimension n(n− 1)/2. A basis is given by the functions fij defined by

fij(ek, el) = δikδjl − δilδjk

with 1 ≤ i < j ≤ n. We set fji = −fij . A general element of Ω2(V ) is then a

linear combination f = aijfij with aij = −aji, that is, elements in Ω2(V ) are

antisymmetric tensors on V ∗.

If f, g ∈ Ω1(V ) then f ∧ g ∈ Ω2(V ) with (f ∧ g)(x, y) = f(x)g(y)− f(y)g(x). In

particular, fij = fi ∧ fj . The wedge product is antisymmetric, f ∧ g = −g ∧ f.

Example When V = R3 the wedge product is simply the cross product of vec-

tors. We can identify Ω2(R3) as the space R3 by using the standard basis: The ele-

ments in an antisymmetric tensor (aij) are parametrized by a vector (a23, a31, a12)

and then x ∧ y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

In general, Ωk(V ) denotes the space of alternating multilinear forms f : V ×V ×

· · · × V → K (k arguments). Alternating means that the sign of the function is

reversed when a pair of arguments is transposed. In other words, a permutation σ

of the arguments can be compensated by a multiplication by ε(σ) where ε(σ) = ±1

is the parity of the permutation,

f(xσ(1), ..., xσ(n)) = ε(σ)f(x1, ..., xn).

A basis in Ωk(V ) is given by the multilinear forms fi1i2...ik defined by

fi1...ik(x(1), . . . , x(k)) = det (x(j)
im

).
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By the symmetry properties of the determinant the right-hand-side indeed defines

an alternating form. The dimension of Ωk(V ) is equal to the binomial factor
( n
k

)
.

In particular, dim Ωn(V ) = 1 and Ωk(V ) = 0 for k > n. We set Ω0(V ) = K and

Ω(V ) = Ω0(V )⊕ Ω1(V )⊕ · · · ⊕ Ωn(V ).

The dimension of the direct sum is

dim Ω(V ) =
∑
k

(
n
k

)
= 2n.

We generalize the wedge product to a product

Ωj(V )× Ωk(V )→ Ωj+k(V )

by the formula

(f∧g)(x(1), . . . , x(j+k)) =
1
j!

1
k!

∑
σ∈Sj+k

ε(σ)f(x(σ(1)), . . . , x(σ(j)))g(x(σ(j+1)), . . . , x(σ(j+k))),

where Sn is the group of permutations of integers 1, 2, . . . , n.

Exercise 1 Show that f ∧ g is alternating.

Exercise 2 Prove that f ∧ g = (−1)jkg ∧ f.

Exercise 3 Prove that f ∧ (g ∧ h) = (f ∧ g) ∧ h.

Note that the basis fi1i2...ik defined above is obtained from the fi’s,

fi1i2...ik = fi1 ∧ fi2 ∧ · · · ∧ fik .

2.2 Differential forms

Let M be a smooth manifold of dimension n. A differential form of degree k on M

is a smooth distribution ωx ∈ Ωk(TxM) of alternating forms in the tangent spaces.

We denote by Ωk(M) the set of differential forms of degree k. Smoothness of the

distribution x 7→ ωx is defined in terms of local coordinates x1, . . . , xn. Recall that

each coordinate xi defines a local vector field ∂i = ∂
∂xi

, interpreted as a derivation of

the algebra C∞(M). A tangent vector at a point x is uniquely written as v = vi∂
i.

For this reason ω is given in terms of the coordinate functions

ωi1...ik(x) = ωx(∂i1 , . . . , ∂ik).
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Smoothness of ω means that the coordinate functions ωi1...ik(x) are smooth func-

tions of the coordinates xi.

Locally, a basis for Ω1(M) is given by the differential 1-forms dxi defined by

dxi(∂j) = δij .

A basis for k-forms is given by

dxi1 ∧ dxi2 ∧ · · · ∧ dxik with 1 ≤ i1 < i2 < · · · < ik ≤ n.

In the given coordinate chart we have then

ω =
1
k!
ωi1i2...ik(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxik .

The wedge pruduct of forms ω ∈ Ωj(M) and θ ∈ Ωk(M) is a form in Ωj+k(M)

defined pointwise as (ω ∧ θ)x = ωx ∧ θx. The product is associative and

ω ∧ θ = (−1)jkθ ∧ ω.

The exterior derivative of ω ∈ Ωk(M) is defined in terms of local coordinates as

an element dω of Ωk+1(M),

(1) d
(
ωi1...ikdxi1 ∧ · · · ∧ dxik

)
= ∂jωi1...ikdxj ∧ dxi1 ∧ · · · ∧ dxik

We define Ω0(M) = C∞(M) and then

df = ∂jfdxj

for a smooth function f. We must also check that the definition of dω in terms of

local coordinates is compatible with coordinate tranformations. Since ∂′k = ∂
∂x′k

=
∂xj
∂x′k

∂j by the chain rule, we obtain

ω′i1...ik = ω(∂′i1 , . . . , ∂′ik) = ω(∂j1 , . . . , ∂jk)
∂xj1
∂x′i1

. . .
∂xjk
∂x′ik

.

In other words,

ωi1...ikdxi1 ∧ · · · ∧ dxik = ω′j1...jkdx′j1 ∧ · · · ∧ dx
′
jk
,

for

ω′i1...ik = ωj1...jk
∂xj1
∂x′i1

. . .
∂xjk
∂x′ik

.
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When the exterior differentiation is applied to the right-hand-side we obtain an

expression similar to (1) but the coordinates xi replaced by x′i; But the exterior

derivative of the right-hand-side is equal to

∂′jω′i1...ikdx′j ∧ dx′i1 ∧ · · · ∧ dx
′
ik

=
∂xl
∂x′j

∂l
(
∂xj1
∂x′i1

. . .
∂xjk
∂x′ik

ωj1...jk
)
dx′j ∧ dx′i1 ∧ · · · ∧ dx

′
ik

= ∂lωi1...ikdxl ∧ dxi1 · · · ∧ dxik + ωj1...jk
∂2xj1
∂x′jx

′
i1

∂xj2
∂x′i2

. . .
∂xjk
∂x′ik

dx′j ∧ dx′i1 · · · ∧ dx
′
ik

+ . . . .

Using the antisymmetry of the wedge products dxj ∧ dxip and the symmetry of

the second derivatives we observe that all the terms involving second derivatives

are identically zero and therefore only the first term remains, giving the exterior

derivative of ω in the xi coordinates.

To remember the transformation rule for differential forms it is sufficient to keep

in mind the transformation for 1-forms,

dx′i =
∂x′i
∂xj

dxj ,

since the higher order forms are exterior products of the basic 1-forms and smooth

functions.

Theorem. d2 = 0.

Proof.

d2(ωi1...ikdxi1 ∧ · · · ∧ dxik) = d
(
∂jωi1...ikdxj ∧ dxi1 ∧ · · · ∧ dxik

)
= ∂l∂jωi1...ikdxl ∧ dxj ∧ . . . dxik .

Again, using the symmetry of second derivatives and antisymmetry of the wedge

product dxl ∧ dxj we see that all terms on the right vanish and thus d2ω = 0.

Note that dω = 0 for ω ∈ Ω0(M) implies that ω is a constant function in

each connected component of M. Set Ω(M) = Ω0(M) ⊕ Ω1(M) ⊕ . . .Ωn(M) with

n = dimM.

Theorem. Let ω ∈ Ωp(M) and θ ∈ Ωq(M). Then d(ω∧ θ) = dω∧ θ+ (−1)pω∧dθ.
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Proof. Set ω = ωi1...ipdxi1 ∧ · · · ∧ dxip and φ = φj1...jqdxj1 ∧ · · · ∧ dxjq . Then

ω ∧ φ = ωi1...ipφj1...jqdxi1 ∧ . . . dxip ∧ dxj1 ∧ · · · ∧ dxjq

d(ω ∧ φ) = φj1...jq∂kωi1...ipdxk ∧ dxi1 ∧ . . . dxip ∧ dxj1 ∧ · · · ∧ dxjq

+ ωi1...ip∂kφj1...jqdxk ∧ dxi1 ∧ . . . dxjq

= dω ∧ φ+ (−1)pωi1...ip∂kφj1...jqdxi1 . . . dxip ∧ dxk ∧ dxj1 ∧ . . . dxjq

= dω ∧ φ+ (−1)pω ∧ dφ,

where we have used the alternating property of the wedge product, dxi1 ∧ . . . dxip ∧

dxk = (−1)pdxk ∧ dxi1 ∧ . . . dxip .

There is alternative way to think about differential forms. Let X ∈ D1(M) and

ω ∈ Ω1(M). We can define a smooth function on M by f(x) = ωx(X(x)) by the

natural pairing of tangent vectors X(x) and the elements ωx ∈ T ∗xM in the dual.

Thus a 1-form is a map from D1(M) to C∞(M). This map is linear, moreover

ω(gX) = gω(X) for any smooth function g.

In a similar way, any ω ∈ Ωk(M) can be thought of as a multilinear function

ω : D1(M)×D1(M)× . . . D1(M)→ C∞(M) by

ω(X1, X2, . . . , Xk)(x) = ωx(X1(x), . . . , Xk(x)).

By the definition of a differential form, this map is alternating.

There is converse result which we state without proof: Any alternating map

D1(M) × · · · × D1(M) → C∞(M) which is C∞(M) linear in each variable, is

uniquely represented by a differential form.

Let f ∈ Ω0(M) and X ∈ D1(M). Then

df(X) = (∂kfdxk)(Xj∂
j) = Xj∂

kfdxk(∂j) = Xj∂
jf = X · f.

Next let ω ∈ Ω1(M) and X,Y ∈ D1(M). Now

(dω)(X,Y ) = (∂jωidxj ∧ dxi)(X,Y ) = (∂jωi)(dxj(X)dxi(Y )− dxj(Y )dxi(X))

= (∂jωi)(XjYi − YjXi) = X · ω(Y )− Y · ω(X)− ωi(Xj∂
jYi − Yj∂jXi)

= X · ω(Y )− Y · ω(X)− ω([X,Y ]).
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Exercise Generalize the formula above to differential forms of degree k,

(dω)(X1, . . . , Xk+1) =
∑
i

(−1)i−1Xi · ω(X1, . . . , X̂i, . . . , Xk+1)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1),

where the hat over Xi means that this variable is deleted from the sequence.

Next we define the interior product of a vector field X and a k form ω.

(iXω)(X1, . . . , Xk−1) = ω(X,X1, . . . , Xk−1).

Note that iXω is a form of degree k − 1. For example, when ω ∈ Ω1(M), then iXω

is simply the function ω(X). If ω = 1
2ω

ijdxi ∧ dxj then

(iXω)(Y ) = ω(X,Y ) =
1
2
ωij(XiYj −XjYi)

= Yiω
jiXj ,

by ωij = −ωji. Thus iXω = θ with θi = Xjω
ji. In general, for ω = 1

k!ω
i1...ikdxi1 ∧

· · · ∧ dxik we have

(iXω)i1...ik−1 = Xjω
ji1...ik−1 .

For any smooth map f : M → N we define the pull-back operator f∗ : Ωk(N)→

Ωk(M) by

(f∗ω)x(v1, . . . , vk) = ωf(x)(Txf · v1, . . . , Txf · vk)

for v1, . . . , vk ∈ TxM. In terms of local coordinates xi on M and yi on N we have

(f∗ω)i1...ik(x) =
∂yj1
∂xi1

. . .
∂yjk
∂xik

ωj1...jk(y).

In the case when M = N this gives us again the coordinate transformation rule of

differential forms.

Exercise Show that f∗(dω) = d(f∗ω) and f∗(ω ∧ θ) = (f∗ω) ∧ (f∗θ) for all

differential forms ω, θ and a smooth map f.

The pull-back of a form h ∈ C∞(M) = Ω0(M) is simply the composed function

f∗h = h ◦ f.

Finally we define the Lie derivative of a k− form ω in the direction of a vector

field X as the k−form LXω,

(LXω)(X1, . . . , Xk) = X · ω(X1, . . . , Xk)−
k∑
i=1

ω(X1, . . . , [X,Xi], . . . , Xk).
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In terms of local coordinates,

(LXω)i1...ik = X · ωi1...ik +
k∑

α=1

(∂iαXj)ωi1...iα−1jiα+1...ik .

Exercise Prove the relation LX = d ◦ iX + iX ◦ d.

2.3 Maxwell’s equations and differential forms

We arrange the Cartesian coordinates of the electric field E and the magnetic

field B as an antisymmetric 4× 4 matrix,

(Fµν) =


0 −Ex −Ey −Ez
Ex 0 −cBz +cBy
Ey cBz 0 −cBx
Ez −cBy cBx 0

 .

We label the rows and columns by µ, ν = 0, 1, 2, 3 and we set F = 1
2F

µνdxµ ∧ dxν .

Let φ be an electric scalar potential and A a magnetic vector potential. Then

E = −∇φ− ∂0A and B = ∇×A,

where ∂0 = 1
c
∂
∂t but we shall work in units with speed of light c = 1. Define the

1-form A = Aµdxµ with A0 = φ and Ai = cAi. Thus we may write

Fµν = ∂µAν − ∂νAµ,

that is, F = dA.

Since d2 = 0 we have automatically dF = 0. Written in electric and magnetic

field components this gives the second set of Maxwell’s equations,

∇ ·B = 0

∇×E = −∂B
∂t
.

In order to obtain a differential form expression for the first set of Maxwell’s equa-

tions,

∇ ·E = ρ/ε0

∇×B = µ0

(
ε0
∂E
∂t

+ j
)
,
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with µ0ε0 = 1/c2, we must first fix a metric tensor (gµν) in space-time; this could

be just the Minkowski metric diag(1,−1,−1,−1) but we may take any (pseudo)

Riemannian metric. Note that the second set of Maxwell’s equations is intrinsic to

any smooth manifold, it does not depend on the choice of metric.

We shall denote gij = g(∂i, ∂j) for a (pseudo) Riemannian metric gx : TxM ×

TxM → R. Recall from the relativity course that by definition the matrix (gij)

is symmetric and nondegenerate. The matrix elements of the inverse matrix are

denoted by (gij), so gijgjk = gijgjk = δik.

We define an orientation on a manifold M of dimension n. The manifold is

oriented if we have a complete system of local coordinates such that all coordinate

transformations x′i = x′i(x1, . . . , xn) satisfy the condition det( ∂x
′
i

∂xj
) > 0.

Not every manifold can be oriented. The standard spheres Sn inherit an orien-

tation from Rn+1. The orientation on Rn is given by the ordered set of Cartesian

coordinates (x1, x2, . . . , xn). A coordinate system (y1, . . . , yn) on the embedded unit

sphere in Rn+1 is then oriented if the vectors (∂1
y , . . . , ∂

n
y , v) are compatible with the

orientation of Rn+1. Here v is the outward unit normal vector field on the sphere

and compatibility means that the matrix relating the given tangent vectors to the

standard basis has positive determinant. On the other hand, the real projective

plane PR2 = S2/Z2 = (R3 − {0})/R+, consisting of lines through the origin in R3,

has no orientation.

A metric defines a preferred n-form on an oriented manifold, called the volume

form. In terms of local oriented coordinates it is defined as

volM = |det(gij)|1/2dx1 ∧ dx2 ∧ . . . dxn.

Let x′i be another set of oriented coordinates. Then

dx′1 ∧ dx′2 · · · ∧ dx′n = det
(
∂x′i
∂xj

)
dx1 ∧ dx2 · · · ∧ dxn.

On the other hand, g′ij = ∂xk
∂x′i

∂xl
∂x′j

gkl, and this gives

det(g′ij) = det(gij)

(
det

(
∂xi
∂x′j

))2

.

This implies that

|det(g′ij)|1/2dx′1 ∧ dx′2 · · · ∧ dx′n = |det(gij)|1/2dx1 ∧ dx2 · · · ∧ dxn
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and thus the definition of volM is compatible with change of oriented coordinates.

Note that the orientation is really important: If the determinant of the coordinate

transformation is negative then the volume would change the sign.

A metric defines also a duality operation ∗ : Ωk(M) → Ωn−k(M) on differential

forms. In local coordinates,

∗ω = θi1i2...in−kdxi1 ∧ dxi2 . . . dxin−k with

θi1...in−k = |det(gij)|−1/2 1
k!
ε
i1...in−k

j1...jk
ωj1...jk ,

where εi1...in is the totally antisymmetric tensor with ε12...n = +1 and the raising

of indices is done with the help of the metric tensor as in general relativity.

Example Let M = R4 and gij the Minkowski metric. Then volM = dx0∧dx1∧

dx2 ∧ dx3. The dual of the Maxwell 2-form F = 1
2F

µνdxµ ∧ dxν is given by

(∗F )µν =
1
2
εµναβF

αβ ,

so (∗F )12 = F 03, and cyclic permutations of 123, and (∗F )01 = −F 23, and cyclic

permutations of 123. That is, the magnetic components of the dual are equal to

(−1)× the electric components of the original and the electric components of the

dual are equal to the magnetic components of the original field.

The complete set of Maxwell’s equations can now be written as

d ∗ F = J

dF = 0,

where the 3-form J is defined as 1
3!ε

µαβγJµdxα ∧ dxβ ∧ dxγ with J0 = ρ/ε0 and

Jk = cµ0j
k. Here ρ is the charge density and j is the electric current density.

2.4 de Rham cohomology

Recall that d : Ωk(M)→ Ωk+1(M) is a linear map with d2 = 0. We set Bk(M) =

d(Ωk−1(M)) ⊂ Ωk(M) and Zk(M) = ker d = {ω ∈ Ωk|dω = 0} ⊂ Ωk(M). These

are linear subspaces with the property Bk(M) ⊂ Zk(M), because of d2 = 0. El-

ements of Zk are called closed forms and elements of Bk are exact forms. We

set

Hk(M) = Zk(M)/Bk(M), with k = 0, 1, 2, . . .



20 JOUKO MICKELSSON

where H0(M) ≡ Z0(M). Note that Hk(M) = 0 for k > n since Ωk(M) = 0 for

k > n. The vector spaces Hk(M) are called the de Rham cohomology groups of M.

In case when M is compact, one can prove that dimHk(M) <∞ for all k.

Example M = R3. Since df = 0 for f ∈ C∞(M) = Ω0(M) means that f is

a constant function, we get H0(R3) = R. If ω = ωidxi satisfies dω = 0 then the

vector field (ω1, ω2, ω3) has zero curl, and we know vector analysis that there is

a scalar potential f such that ∇f = ω, in other words, df = ω. Thus B1 = Z1

and so H1(R) = 0. If ω = 1
2ω

ijdxi ∧ dxj is a 2-form with dω = 0 then divω = 0

with ω = (ω23, ω31, ω12). This implies that there is a vector potential A such that

∇×A = ω, or in other words, dA = ω,A = Aidxi. Again, Z2 = B2 andH2(R3) = 0.

In the same vein one can show that H3(R3) = 0.

Poincare’s lemma. Let M ⊂ Rn be a star shaped open set. This means that there

is a point z ∈ M such that the line tx + (1 − t)z, 0 ≤ t ≤ 1, belongs to M for any

x ∈M. Let ω be a closed k−form on M, k > 0. Then there exists a (k − 1)-form θ

such that dθ = ω.

Proof. Define

θi1...ik−1(x) = k

∫ 1

0

tk−1(xj − zj)ωji1i2...ik−1(tx+ (1− t)z)dt.

We claim that dθ = ω. Now

dθ = k

∫ 1

0

tk−1ωji1...ik−1(tx+ (1− t)z)dxj ∧ dxi1 ∧ . . . dxik−1dt

+ k

∫
tk(xj − zj)∂lωji1...ik−1(tx+ (1− t)z)dxl ∧ dxi1 ∧ . . . dxik−1dt.(1)

The equation dω = 0 gives

∂lωji1...ik−1 ± cyclic permutations of lji1 . . . ik−1 = 0,

where the signs are given by the parity of the cyclic permutation. From this equation

one can reduce, by setting the contraction i∂jdω equal to zero,

k∂lωji1...ik−1dxl ∧ dxi1 ∧ · · · ∧ dxik−1 = ∂jωli1...ik−1dxl ∧ · · · ∧ dxik−1 .

Note that in local coordinates

i∂jdω
∗ + di∂jω

∗ = L∂jω∗ = ∂jω∗.
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Inserting this to the second term I2 on the right-hand-side of (1) we obtain

I2 =
∫ 1

0

(xj − zj)tk∂jωli1...ik−1(tx+ (1− t)z)dxl ∧ dxi1 · · · ∧ dxik−1dt

=
∫ 1

0

tk
d

dt
ωli1...ik−1(tx+ (1− t)z)dxl ∧ dxi1 . . . dxik−1dt

= −k
∫ 1

0

tk−1ωli1...ik−1(tx+ (1− t)z)dxl ∧ dxi1 ∧ . . . dxik−1dt

+ ωli1...ik−1dxl ∧ dxi1 · · · ∧ dxik−1 .

Insertion to (1) completes the proof of dθ = ω.

The above result extends (by a use of coordinates) to the case when M is a

contractible subset of a smooth manifold: contractibility means that the identity

map on M can be smoothly deformed to a constant map x 7→ X0 on M. Let

ft : M → M be such a contraction, f0(x) = x0 and f1(x) = x, 0 ≤ t ≤ 1. Then

one can repeat the proof but with the straight lines t 7→ tx + (1 − t)z replaced by

t 7→ ft(x), z = x0, see Nakahara, section 6.3, for details.

Example 1 Let M = S1. The 1-form dφ is closed but dφ 6= df for any smooth

function f on S1. Note that the polar angle φ is not a function on S1 since it is

nonperiodic. Any 1-form on S1 is given as f(φ)dφ for some periodic function f of

φ. The integral of f over the interval [0, 2π] gives a real number λf . If λf = λg

for any two functions f, g then we can write f − g = h′ for a periodic function h,

that is, fdφ − gdφ = dh. It follows that the cohomology classes [f ] ∈ H1(S1) are

parametrized by the integral λf and so H1(S1) = R.

Example 2 On the unit sphere S2 the area form is given as ω = sin θdθ ∧ dφ in

spherical coordinates. Locally, ω = d(− cos θdφ) = d(−φ sin θdθ).Note that the first

expression becomes singular at the poles θ = 0, π whereas the second is nonperiodic

in the coordinate φ. One can prove that H2(S2) = R and that the cohomology

classes are parametrized by the integral of the 2-form over S2. In general, it is

known that Hk(Sn) = 0 for 1 ≤ k ≤ n− 1 and that H0(Sn) = R = Hn(Sn).

Example 3 H1(S1×S1) = R2 (basis of 1-forms dφ1, dφ2) and H2(S1×S1) = R,

basis dφ1 ∧ dφ2.
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2.5 Integration of differential forms

Let M be a smooth oriented manifold of dimension n. We fix an atlas of coordi-

nate neighborhoods compatible with the given orientation. Let x1, . . . , xn be local

coordinates on an open set U ⊂M. Asssume that f ∈ C∞(M) is such that f(x) = 0

when x is outside of a compact subset K of U. Then ω = f(x)dx1 ∧ dx2 · · · ∧ dxn
is a n− form on M. We define the integral∫

ω =
∫
f(x)dx1dx2 . . . dxn,

as the ordinary Riemann integral in Rn.

Let us assume that we have a locally finite atlas (Uα, φα). This means that for

any x ∈ M there is an open neighborhood V of x such that V intersects only a

finite number of the sets Uα. A space which has a locally finite cover is said to be

paracompact. In fact, any finite-dimensional manifold is paracompact according to

our definition, page 1 in these notes. A locally finite atlas has a subordinate partition

of unity. That is, there is a family of smooth nonnegative functions ρα : M → R

such that

(1) suppρα ⊂ Uα
(2)

∑
α ρα(x) = 1 for all x ∈M.

The support suppf of a function f is defined as a closure of the set of points x for

which f(x) 6= 0.

Let ω ∈ Ωn(M). we define ∫
M

ω =
∑
α

∫
ραω,

and we apply the previous definition to each term on the right-hand-side. The

integral converges always when M is compact.

Exercise Show that the above definition does not depend on the choice of the

partition of unity or of the locally finite atlas.

Next we want to define the integral of a form ω ∈ Ωk(M) over a parametrized

k− surface for arbitrary 0 ≤ k ≤ n.

A standard k-simplex in Rk is the subset

σk = {(x1, . . . , xk) ∈ Rk|
∑

xi ≤ 1, xj ≥ 0}.
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So σ0 is just a point, σ1 is the unit interval, σ2 is a triangle, etc. A singular k-

simplex is any smooth map sk : σk →M. A k-chain is a formal linear combination∑
aαsk,α, with aα ∈ R and each sk,α is a singular k− simplex. We define an affine

map F ik : σk−1 → σk where i = 0, 1, . . . , k. Note that the subset of points in σk

with the coordinate xi = 0 can be naturally identified as a k − 1 simplex σk−1

for 1 ≤ i ≤ k. This defines the map (as an identity map) for i = 1, 2 . . . , k. The

remaining map F 0
k sends the (k − 1)-simplex σk−1 to the face of the k-simplex

which is not parallel to any of the coordinate axes. The map is completely fixed

by requiring it to be affine and compatible with the orientations, and such that the

origin of σk−1 is mapped to the vertex of σk lying on the first coordinate axes, and

the vertex of σk−1 lying on the i :th coordinate axes is mapped to the vertex of σk

on the (i+ 1):th coordinate axes, for i = 1, 2, . . . , k − 1. See the picture below.

macro:-¿simplex.pdf

The boundary of a singular k-simplex sk : σk →M is the singular k-chain defined

as

∂sk =
k∑
i=0

(−1)isk ◦ F ik.

we extend the definition, by linearity, to the space Ck of singular k-chains, ∂ : Ck →

Ck−1.

Theorem. ∂2 = 0.

Proof. We first observe that

F ik ◦ F
j
k−1 = F jkF

i−1
k−1, for j < i.
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Let s =
∑
α aαsk,α ∈ Ck. Then

∂2s = ∂
∑
α

aα

k∑
i=0

(−1)isk,α ◦ F ik

=
∑
α

aα

k∑
i=0

(−1)i
k−1∑
j=0

sk,α ◦ F ik ◦ F
j
k−1(−1)j

=
∑
α

aα

 ∑
0≤i≤j≤k−1

(−1)i+jsk,αF ik ◦ F
j
k−1

+
∑

0≤j<i≤k

(−1)i+jsk,αF ik ◦ F
j
k−1


=
∑
α

aα

 ∑
0≤i≤j≤k−1

(−1)i+jsk,αF ik ◦ F
j
k−1

+
∑

0≤j<i≤k

(−1)i+jsk,αF
j
k ◦ F

i−1
k−1

 .

Relabel i 7→ j, j 7→ i − 1 in the first term of right-hand-side of the last equality;

then the terms cancel.

A cycle is a singular chain s such that ∂s = 0. A boundary is a singular chain

b such that b = ∂s for some singular chain s. Denote by Zk the space of k-cycles

and by Bk the space of k-boundaries. Finally, the singular k-homology group is the

space

Hk(M) = Hk(M,R) = Zk(M)/Bk(M).

Sometimes one considers also the homology group Hk(M,Z) which is defined as

the real homology group but one restricts to integral linear combinations of the

singular k-simplexes.

Exercise Show that H0(M) is isomorphic with Rk, where k is the number of

path connected components of M.

The homology groups Hk of contractible manifolds vanish for k > 0, so in par-

ticular Hk(Rn) = 0 for k > 0. On the other hand, Hn(Sn) = R but Hk(Sn) = 0 for

0 < k < n.

We define the integral of a k-form over a singular k-chain s =
∑
α aαsk,α,∫

s

ω =
∑
α

aα

∫
σk

s∗k,αω.
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Each of the integral on the right is an ordinary Riemann integral of a smooth

function defined in the standard simplex σk ⊂ Rk, after writing each of the pull-

back forms as f(x)dx1 ∧ . . . dxk.

Theorem. (Stokes’ theorem) ∫
s

dω =
∫
∂s

ω

for any ω ∈ Ωk−1(M) and for any singular k-chain s.

Proof. By linearity, it is sufficient to give the proof for a single singular k-simplex

sk. But in this case a typical term in s∗kω can be written as

s∗kω =
k∑
j=1

bj(x)dx1 ∧ . . . ˆdxj ∧ . . . dxk(−1)j−1

for some smooth functions bj . Then

d(s∗kω) = s∗k(dω) =
∑

(∂jbj)dx1 ∧ · · · ∧ dxk = f(x)dx1 ∧ · · · ∧ dxk.

We can now apply to familiar Gauss’ theorem for vector fields in Rk,∫
σk

∂jbjdx1 . . . dxk =
∫
∂σk

b · ndS,

where n is the outward normal vector field on σk and dS is the Euclidean area

measure on the surface ∂σk of the k-simplex. But the right-hand-side of the equation

is equal to the integral
∫
∂σk

s∗kω, which proves the theorem.

We have a pairing Hk(M)×Hk(M)→ R which is given as

< [s], [ω] >=
∫
s

ω.

Because of Stokes’ theorem the right-hand-side does not depend on particular rep-

resentatives of the (co)homology classes, i.e., if s − s′ is a boundary and ω − ω′ is

a coboundary then ∫
s

ω =
∫
s′
ω′.

For compact oriented manifolds one can prove that the pairing is nondegenerate,

i.e., if < [s], [ω] >= 0 for all [ω] (resp. for all [s]) then [s] = 0 (resp. [ω] = 0).
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There is a more refined version of Stokes’ theorem (which we are not going to

prove). This uses the idea of a closed submanifold with boundary. A manifold M

with boundary is defined using the half space Rn+ = {x ∈ Rn|xn ≥ 0} as a model

instead of the vector space Rn. That is, M should be equipped with a cover by open

sets U and coordinate maps φ : U → Rn+ which are homeomorphism to open subsets

of the half space. The coordinate transformations φ ◦ψ−1 are again required to be

smooth in their domain of definition. Note that the derivative in the xn direction

at the boundary points xn = 0 is only defined to the positive direction.

Example The closed unit ball Bn = {x ∈ Rn|||x|| ≤ 1} is a manifold with

boundary. The set of boundary points is the manifold Sn−1.

Let N ⊂M be an oriented manifold with boundary (dimension n) embedded in

M. Its boundary ∂N is a manifold of dimension n − 1. Let ω ∈ Ωn−1(M). Then

one can prove ∫
N

dω =
∫
∂N

ω.

Note that the integral on the left is an integral of a n-form over a manifold of

dimension n (and this we have already defined) and on the right we have an integral

of a (n− 1)-form over a manifold of dimension n− 1.

Additional reading: Nakahara: 5.4, 5.5, and Chapter 6

Chern, Chen, and Lam: Chapters 2 and 3
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CHAPTER 3: RIEMANN GEOMETRY

3.1 Affine connection

According to the definition, a vector field X ∈ D1(M) determines a derivation

of the algebra of smooth real valued functions on M . This action is linear in

X such that (fX)g = f(Xg) for any pair f, g of smooth functions. Next, we

want to define an action of X on D1(M) itself, which has similar properties. Let

∇X : D1(M)→ D1(M) for any X ∈ D1(M) be an operator satisfying the following

conditions:

(1) The map Y 7→ ∇XY is real linear in Y for any fixed X,

(2) ∇fX+gY Z = f∇XZ + g∇Y Z for any vector fields X,Y, Z and any smooth

real valued functions f, g, and

(3) ∇X(fY ) = f∇XY + Y (X · f) for any vector fields X,Y and any smooth

real valued function f .

An operator ∇ satisfying these conditions is called an affine connection on the

manifold M .

Example 1 Let M = Rn and define

∇XY = (X · Y j) ∂

∂xj
.

Then, ∇ is an affine connection.

Warning! The above example needs a modification when applied to an arbitrary

manifold M . The difficulty is that the right-hand side depends on the choice of

local coordinates and it does not transform like a true vector. If we transform to

coordinates yj = yj(x1, . . . , xn), then in the new coordinates

Y ′j(y) =
∂yj

∂xi
Y i(x)

and therefore

(X · Y ′j)∂′j = (X · Y i)∂y
j

∂xi
∂′j + Yi

(
X · ∂yj

∂xi

)
∂′j .

The coordinates of the first term on the right-hand side are equal to ∂yj

∂xi (∇XY )i, but

for any non-linear coordinate transformation we also have a second inhomogeneous

term.
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Choosing local coordinates, the difference

Hi(X,Y ) = (∇XY )i −X · Y i

is linear in both arguments in the extended sense

Hi(fX, gY ) = fgHi(X,Y ),

for any smooth functions f and g. For this reason, we can write

Hi(X,Y ) = ΓijkX
jY k.

Here Γijk = Γijk(x) are smooth (local) functions on M . Once again,

(∇XY )i = X · Y i + ΓijkX
jY k.

The functions Γijk are called the Christoffel symbols of the affine connection ∇. Let

us look what happens to the Christoffel symbols in a coordinate transformation

y = y(x). Let us denote by ∇i the covariant derivative ∇ ∂

∂xi
. Then,

∇i∂j = Γkij∂k.

Denoting ∂′i = ∂
∂yi , we get

∇′i∂′j = Γ′kij∂
′
k =

∂xa

∂yi
∇a
(
∂xb

∂yj
∂b

)
=
∂xa

∂yi

[
∂xb

∂yj
∇a∂b + ∂a

(
∂xb

∂yj

)
∂b

]
=
∂xa

∂yi
∂xb

∂yj
Γcab∂c +

∂2xb

∂yi∂yj
∂b.

Transforming back to the x coordinates on the left-hand side, we finally get

(3.1.1) Γ′kij(y) =
∂xa

∂yi
∂xb

∂yj
∂yk

∂xc
Γcab(x) +

∂yk

∂xc
∂2xc

∂yi∂yj
.

Note that in linear coordinate transformations, the inhomogeneous term containing

second derivatives vanishes and the Christoffel symbols transform like components

of a third rank tensor.

Exercise 1 We define the Christoffel symbols on the unit sphere, using spherical

coordinates (θ, φ). When θ 6= 0, π, we set

Γθφφ = −1
2

sin 2θ, Γφθφ = Γφφθ = cot θ,
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and all the other Γ’s are equal to zero. Show that the apparent singularity at

θ = 0, π can be removed by a better choice of coordinates at the poles of the

sphere. Thus, the above affine connection extends to the whole S2.

3.2 Parallel Transport

The tangent vectors at a point p ∈ M form a vector space TpM. Thus, tangent

vectors at the same point can be added. However, at different points p and q, there

is in general no way to compare the tangent vectors u ∈ TpM and v ∈ TqM . In

particular, the sum u + v is ill-defined. An affine connection gives a method to

relate tangent vectors at p to tangent vectors at q, provided that we have fixed

some smooth curve γ(t) starting from p and ending at q.

A curve γ defines a distribution of tangent vectors along the curve by

X(s) = ẋi(s)∂i.

We have chosen a local coordinate system xi. Thus, X(s) ∈ Tγ(s)M . Consider the

system of first order ordinary differential equations given by

(3.2.1) Ẏ i(s) + Γikj(x(s))ẋk(s)Y j(s) = 0, i = 1, 2, . . . , n.

Here Y (s) is an unknown vector field along the curve x(s).

Exercise 2 Show that the set of equations above is coordinate independent in

the sense that if the equations are valid in one coordinate system, then they are

also valid in any other coordinate system.

A vector field Y along the curve x(s) satisfying the differential equation is called

a parallel vector field. The existence and uniqueness theorem in the theory of first

order differential equations gives the following fundamental theorem in geometry:

Theorem 3.2.2. Given a tangent vector v ∈ TpM at the initial point p = γ(s0)

of a smooth curve γ(s) then there is a unique parallel vector field Y (s) along γ(s)

satisfying the initial condition Y (s0) = v.

Definition 3.2.3. A curve γ(s) is a geodesic if its tangent vectors γ̇(s) at each

point are parallel.
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Thus, the statement γ(s) is a geodesic means that the coordinate functions xi(s)

satisfy

ẍi(s) + Γijk(x(s))ẋj(s)ẋk(s) = 0.

This condition is a second order ordinary differential equation for the coordinate

functions. We can use existence and uniqueness results from the theory of differen-

tial equations:

Theorem 3.2.4. For given point p ∈ M and a tangent vector u ∈ TpM there is,

in some open neighborhood of p, a unique geodesic γ(s) such that γ(0) = p and

γ̇(0) = u.

Example 2 Let M = S2 and let Γ be the affine connection in Exercise 1. Then,

the coordinates θ(s) and φ(s) of a geodesic satisfy

θ̈(s)− 1
2

sin 2θ(s) φ̇(s)φ̇(s) = 0,

φ̈(s) + 2 cot θ(s) φ̇(s)θ̇(s) = 0.(3.2.5)

Find the general solution to the geodesic equations. The solutions are great circles

on the sphere. For example, θ = αs+ β and φ = const.

Let ∇ be a connection on M and γ(s) a curve connecting points p = γ(s1) and

q = γ(s2). We define the parallel transport from the point p to the point q along

the curve γ as a linear map

γ̂ : TpM → TqM.

The map is given as follows: Let u ∈ TpM and let X(s) be a parallel vector field

along γ such that X(s1) = u. We set γ̂(u) = X(s2). The map is linear, because

the differential equation

(3.2.6) Ẋi(s) + Γikj ẋk(s)Xj(s) = 0

is linear in Xi and therefore the solution depends linearly on the initial condition

u.

Example 3 If M = Rn and Γijk = 0, then the parallel transport γ̂ is the identity

map u 7→ u for any curve γ.
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Example 4 Let M and Γ be as in Example 2. Let (θ, φ) = (αs+ β, φ0). Now,

the parallel transport is determined by the equations

Ẋθ = 0,

Ẋφ + cot θ · θ̇Xφ = Ẋφ +Xφα cot(αs+ β) = 0.(3.2.7)

This set has the solution Xθ = const. and Xφ = const. · (sin(αs+β))−1. If u is the

tangent vector (1, 1) at the point (θ, φ) = (π/4, 0), then the parallel transported

vector v at (θ, φ) = (π/2, 0) is (1, 1/
√

2).

3.3 Torsion and Curvature

Given an affine connection ∇ on a manifold M we can define a third rank tensor

field T = (T kij) as follows. Any pair of vector fields X and Y gives another vector

field

(3.3.1) T (X,Y ) = ∇XY −∇YX − [X,Y ].

The dependence on X and Y is linear, after choosing local coordinates, we may

write

T (X,Y )i = XjY kT ijk,

which defines the components T ijk of the tensor. Note that T (X,Y ) is linear in the

extended sense,

T (fX, Y ) = T (X, fY ) = fT (X,Y ), T (X,Y + Z) = T (X,Y ) + T (X,Z)

for any real function f . Note further that T (X,Y ) = −T (Y,X). Since

(3.3.2) T (∂i, ∂j)k = Γkij − Γkji,

we see that T is precisely the antisymmetric part (in the lower indices) of the

Christoffel symbols.

From the above equation and the transformation formula for the Christoffel

symbols follows that the components of the torsion T really transform like tensor

components in coordinate transformations,

T ′
i
jk(y) =

∂yi

∂xp
∂x`

∂yj
∂xm

∂yk
T p`m(x).
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Next, we define the curvature tensor R. For a triple X,Y, Z of vector fields, we

can define a vector field

(3.3.3) R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z.

In local coordinates,

R(∂i, ∂j)∂k = Rmkij∂m.

From the definition of the curvature we get

Rmkij∂m = ∇i∇j∂k −∇j∇i∂k

= ∇i(Γmjk∂m)−∇j(Γmik∂m)

= ∂iΓmjk∂m + ΓmjkΓpim∂p − ∂jΓ
m
ik∂m − ΓmikΓpjm∂p,

(3.3.4) Rmkij = ∂iΓmjk − ∂jΓmik + ΓpjkΓmip − ΓpikΓmjp.

For fixed i and j, we may think of R••ij as a real n× n matrix. With this notation,

(3.3.5) R••ij = ∂iΓ•j• − ∂jΓ•i• + [Γ•i•,Γ
•
j•] =

[
∂i + Γ•i•, ∂j + Γ•j•

]
.

The curvature is antisymmetric in i and j,

Rmkij = −Rmkji.

One checks by a direct computation that in a coordinate transformation y = y(x),

R′
m
kij(y) =

∂ym

∂xq
∂xr

∂yk
∂xs

∂yi
∂xp

∂yj
Rqrsp(x).

Thus, Rmkij is really a 4th rank tensor in contrast to the Christoffel symbols Γkij ,

which transform inhomogeneously in coordinate transformations.

Exercise 3 Check that

T ′
k
ij(y) =

∂yk

∂xm
∂xr

∂yi
∂xs

∂yj
Tmrs (x)

in a coordinate transformation y = y(x).

Assume that the torsion T vanishes, we deduce from (3.3.4) the first Bianchi

identity

(3.3.6) Rmkij +Rmjki +Rmijk = 0
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for all indices. This can also be written as

(3.3.7) R(X,Y )Z +R(Z,X)Y +R(Y, Z)X = 0

for all vector fields X,Y, Z. This identity is in general not true when T 6= 0.

Another important tensor in general relativity is the Ricci tensor

Rij = Rkikj .

Exercise 4 Show that Rij transforms like a second rank tensor in coordinate

transformations.

The curvature is related to the parallel transport in the following way. Consider

a very small parallelogram with edges at x, x+ δx, x+ δx+ δy, x+ δy. According

to the differential equation determining a parallel transport, a tangent vector Y at

x when parallel transported to the point x + δx becomes approximately (in given

local coordinates)

Y i(x+ δx) = Y i(x)− Γijk(x)Y k(x)δxj .

At the next point x+ δx+ δy, we get

Y i(x+ δx+ δy) = Y i(x)− Γijk(x)Y k(x)δxj

− Γijk(x+ δx)[Y k(x)− Γk`m(x)Y m(x)δxj ]δy`

= Y i(x)− Γijk(x)Y k(x)δxj − Γijk(x)Y k(x)δyj

− ∂mΓijk(x)δxmδyjY k(x)

+ Γijk(x)Γk`m(x)Y m(x)δx`δyj .

In the same way, we can compute the parallel transport of Y from x to x+ δy and

further to x + δy + δx. The parallel transport around the parallelogram is then

obtained as a combination of the right-hand side of the above formula and the latter

transport (note the direction of motion!); the result is

δY i = Rikmj(x)Y k(x)δxmδyj

=
1
2
Rikmj(x)Y k(x)(δxmδyj − δxjδym).(3.3.8)

Thus, the parallel transport around the small parallelogram is proportional to the

curvature at x and the area of the parallelogram.
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Example 5

We compute the curvature tensor of the unit sphere S2. Since there are only

two independent coordinates, all the non-zero components of R are given by the

tensor Rij = Rijθφ = −Rijφθ, where i, j = θ, φ. Looking at the table (Exercise 1) of

the Christoffel symbols, we get

Rθφ = sin2 θ, Rφθ = −1,

and the other components = 0.

The second Bianchi identity

(3.3.9) ∂iR
•
•jk + [Γ•i•, R

•
•jk] + ∂jR

•
•ki + [Γ•j•, R

•
•ki] + ∂kR

•
•ij + [Γ•k•, R

•
•ij ] = 0

follows from the formula (3.3.5) and the Jacobi identity for matrices,

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

3.4 Metric and Pseudo-Metric

In order to define distances and inner products between tangent vectors on a

manifold M , we have to define a metric. A Riemannian metric is an inner product

defined in each of the tangent spaces. That is, for each p ∈ M , we have a non-

degenerate bilinear mapping

gp : TpM × TpM → R,

which is symmetric, gp(u, v) = gp(v, u) for all tangent vectors u, v ∈ TpM , and

gp(u, u) > 0 for all u 6= 0, and it depends smoothly on the coordinates of the point

p. Choosing local coordinates xi and writing the tangent vectors in the coordinate

basis, u = ui∂i, we can write a symmetric bilinear mapping as a second rank

symmetric tensor,

gp(u, v) = giju
ivj .

Non-degenerate means that det(gij) 6= 0. Since (gij) is symmetric, it can be diag-

onalized. Positivity of the inner product means then that all eigenvalues of g are

positive.
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In relativity, we need a generalization of the Riemann metric to a pseudo-

Riemannian metric. In this generalization, we shall drop the requirement that

the inner product is positive. In particular, we want to include the Minkowski

space metric (ηµν), which has signature (1, 3), it has one positive eigenvalue (= 1)

and three negative eigenvalues (= −1).

A metric (or a pseudo-metric) can be used to define distances. If γ(s) is a

parametrized curve such that its tangent vector at each point on the curve has

non-negative length, then we define the length of the curve (between the parameter

values a and b) as

`(γ) =
∫ b

a

√
gγ(s)(γ̇(s), γ̇(s)) ds.

The extremal curves γ(t) for the functional `(γ) are the geodetic curves for a cer-

tain connection (the Levi-Civita connection, see the discussion below and Theorem

3.4.4). Recall the Euler-Lagrange variational equations: Let x(t) = (x1(t), x2(t), . . . , xn(t))

be a vector valued function of a real variable t and

S(x(·)) =
∫ b

a

L(x(t), x′(t), x′′(t), . . . )dt

where L is some (differentiable) function of the derivatives x, x′, x′′, . . . . Then the

derivative of S in the direction δx(t) of a variation of the curve x(t) is

δS =
∑
i

∫ b

a

δxi(t)
{
∂L

∂xi
− d

dt

∂L

∂xi′
+ (

d

dt
)2 ∂L

∂xi′′
− . . .

}
dt,

where we have used partial integration in the variable t in order to factor out δx

under the integral sign. The requirement that the variation δS vanishes in arbitrary

directions δx in the path space is then equivalent to the Euler-Lagrange equations

∂L

∂xi
− d

dt

∂L

∂xi′
+ (

d

dt
)2 ∂L

∂xi′′
− · · · = 0,

where i = 1, 2, . . . n.

Example 6 If M = Rn, then we can define a constant metric gij = δij . This

is the standard Euclidean metric. In general in Rn, a Riemannian metric is given

by smooth real functions gij(x) = gji(x) such that the matrix (gij(x)) is strictly

positive for all x ∈ Rn.

Example 7 If M ⊂ Rn is any smooth surface in the Euclidean space, then we

can define a metric g as follows. Let u, v ∈ TpM be a pair of tangent vectors to the



36 JOUKO MICKELSSON

surface at the point p. The tangent vectors are also vectors in Rn, thus we may

compute the scalar product u · v. We set gp(u, v) = u · v. From the fact that the

Euclidean metric is positive definite follows at once that g is a positive symmetric

form.

Example 8 Let M = S2 ⊂ R3. We compute the metric g on M , as defined in

Example 7, in terms of the spherical coordinates θ and φ. The spherical coordinates

are related to the standard coordinates by

∂θ = cos θ cosφ
∂

∂x
+ cos θ sinφ

∂

∂y
− sin θ

∂

∂z
,

∂φ = − sin θ sinφ
∂

∂x
+ sin θ cosφ

∂

∂y
.

From this we obtain the inner products

gθθ = g(∂θ, ∂θ) = 1,

gφφ = g(∂φ, ∂φ) = sin2 θ,

gθφ = gφθ = 0.

For example, the inner product of vectors (1, 2) and (2,−1) (in the θ and φ coor-

dinates) is 1 · 2 · gθθ + 2 · (−1) · gφφ = 2 − 2 sin2 θ, at the point (θ, φ). Note that

the spherical coordinates are orthogonal, the off-diagonal matrix elements of g are

equal to zero.

According to the last example, the distance between to points on a sphere along

a curve γ(t) = (θ(t), φ(t)) is given by

`(γ) =
∫ b

a

[θ′(t)2 + sin2 θ(t)φ′(t)2]1/2dt.

The Euler-Lagrange equations give then (check this!)

θ′′(t)− 1
2
φ′2 sin(2θ(t)) = 0

d

dt
[φ′(t) sin2 θ(t)] = 0

which agrees with the equations in example 2.

Suppose a (pseudo) metric g is given on a manifold M . From the metric, we

can construct a preferred affine connection, called the Levi-Civita connection. Its

Christoffel symbols (in given local coordinates) are given by the formula

(3.4.1) Γkij =
1
2
gk`(∂igj` + ∂jgi` − ∂`gij),
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where gij are the matrix elements of the inverse matrix g−1.

One should always be extremely careful when trying to define something with the

help of local coordinates. It is not a priori clear that the locally defined Christoffel

symbols in various coordinate systems match together to define a connection on

whole manifold M . To investigate the patching problem, we compute what happens

in a coordinate transformation y = y(x). Since

∂

∂yi
=
∂xk

∂yi
∂

∂xk
,

we get

g′ij(y) = gy

(
∂

∂yi
,
∂

∂yj

)
=
∂xk

∂yi
∂x`

∂yj
gx

(
∂

∂xk
,
∂

∂x`

)
= gk`(x)

∂xk

∂yi
∂x`

∂yj
.

Inserting this transformation law into the definition of Christoffel symbols, we get

Γ′kij(y) =
∂yk

∂xc
∂xa

∂yi
∂xb

∂yj
Γcab +

∂yk

∂xc
∂2xc

∂yi∂yj
,

as expected. Thus, the Christoffel symbols defined in different coordinate systems

are compatible and define indeed an affine connection.

Example 9 Since the standard Euclidean metric is constant in the standard

coordinates, the Christoffel symbols of the Levi-Civita connection vanish.

Example 10 The Christoffel symbols computed from the metric defined in

Example

The Levi-Civita connection has two characteristic properties. The first property

is that its torsion T = 0, since Γkij − Γkji = 0. The second property is that the

parallel transport defined by the Levi-Civita connection is metric compatible in the

following sense: Let X(s) and Y (s) be a pair of parallel vector fields along a curve

γ(s). Then,
d

ds
gγ(s)(X(s), Y (s)) = 0,

so the inner products of parallel vector fields are constant along the curve. This

means that the parallel transport γ̂ : TpM → TqM between the end points of the

curve is an isometry.
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Theorem 3.4.2. An affine connection ∇ is compatible with a metric g if and only

if

Z · g(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY )

for all vector fields X,Y, Z.

A word about the notation: We write g(X,Y ) for the real valued smooth function

p 7→ gp(X(p), Y (p)). Remember that a vector field acts on functions as derivations,

so the left-hand side is a well-defined smooth function, too.

Proof. 1) Assume that the condition for g in the theorem is satisfied. Let X(s)

and Y (s) be a pair of parallel vector fields along a curve γ(s). We shall extend

X and Y to vector fields defined in an open neighborhood of the curve. Let Z be

some vector field defined in a neighborhood of the curve such that along the curve

Z(γ(s)) = γ̇(s). Since X and Y are parallel along γ, we have

∇ZX = ∇ZY = 0 on the curve γ.

Thus,
d

ds
gγ(s)(X(s), Y (s)) = Z · g(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ) = 0 on γ.

2) Assume that ∇ is compatible with g. Let X,Y, Z be a triple of vector fields.

Let p ∈M and γ any curve through p such that at p, γ̇(s1) = Z(p). Define vector

fields along γ by X(s) = X(γ(s)) and Y (s) = Y (γ(s)).

Let X1, . . . , Xn be an orthonormal basis of tangent vectors at p. We define a set

of parallel vector fields Xi(s) along γ such that at p = γ(s1), we have Xi(s1) = Xi.

Any pair of vector fields along γ can then be written as

X(s) = αi(s)Xi(s), Y (s) = βi(s)Xi(s).

Now, we have
d

ds
gγ(s)(X(s), Y (s)) =

d

ds
αi(s)βj(s)gγ(s)(Xi(s), Xj(s))

=
d

ds
αi(s)βi(s) = α̇i(s)βi(s) + αi(s)β̇i(s)

= gγ(s)(α̇i(s)Xi(s), βj(s)Xj(s))

+ gγ(s)(αi(s)Xi(s), β̇j(s)Xj(s))

= gγ(s)(∇γ̇X(s), Y (s)) + gγ(s)(X(s),∇γ̇Y (s)).

Applying this formula to the vector field Z at p, Z(p) = γ̇(s1), we get the condition

of the theorem at (the arbitrary point) p.
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Theorem 3.4.3. For a given metric, the Levi-Civita connection is the unique tor-

sion free metric compatible connection.

Proof.

Use the equation on the previous page for coordinate vector fields X,Y, Z =

∂i, ∂j , ∂k and the symmetry Γkij = Γkji of a torsion free connection.

Theorem 3.4.4. A geodesic of the Levi-Civita connection gives an extremal for the

path length between two points. If the points are close enough, then the extremal

gives the minimum length.

Proof. Compare the differential equations obtained from the Euler-Lagrange varia-

tional principle, applied to curve length, with the differential equations of a geodesic,

for the Levi-Civita connection. Note that the Euler-Lagrange equations obtained

from the variation of the curve length are the same as obtained from variation of

the integral (without square root!)∫ b

a

gx(t)(ẋ(t), ẋ(t))dt.

APPENDIX: The Einstein Field Equations

The Einstein tensor is defined as

Gµν = Rµν −
1
2
gµνR,

where R = gµνRµν is the Ricci scalar. We assume that the metric gµν is pseudo-

Riemannian of signature (1, 3) (one positive direction and three negative directions).

The connection is the Levi-Civita connection computed from the metric and Rµν =

Rλµλν is the Ricci tensor.

Exercise 1 Writing Rαβµν = gαλR
λ
βµν , show that

Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ .

Show that this implies that Rµν is symmetric.
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The Einstein tensor is symmetric. Furthermore, its covariant divergence van-

ishes,

(A1) ∇µGµν = ∂µG
µν + ΓµµαG

αν + ΓνµαG
µα = 0.

This is seen as follows. First, taking Z = ∂α, X = ∂µ, Y = ∂ν in Theorem 3.4.2, we

obtain

(A2) ∂αgµν = Γβαµgβν + Γβανgµβ = Γανµ + Γαµν .

This can be also written as

(∇αg)µν = 0.

For the inverse tensor gµν = (g−1)µν , one gets

(A3) ∂αg
µν + Γναβg

µβ + Γµαβg
βν = 0.

Note the difference in sign for the covariant derivative of the metric tensor and its

inverse.

Exercise 2 For any vector field X = Xµ∂µ the components of the covariant

derivatives are (∇νX)µ = ∂νX
µ + ΓµναX

α. Show that the covariant divergence is

given by

(∇µX)µ = (−det g)−1/2∂µ((−det g)1/2Xµ).

In relativity theory literature, it is a custom to use the abbreviation Xµ;ν =

(∇νX)µ for the covariant differentiation of vector (and higher order tensor) indices.

With this notation, we can write the second Bianchi identity as

(A4) Rαβµν;λ +Rαβνλ;µ +Rαβλµ;ν = 0.

Contracting the α and µ indices in this identity with the metric tensor, we get

gαµ(Rαβµν;λ +Rαβνλ;µ +Rαβλµ;ν) = 0.

By the definition of the Ricci tensor, this can be written as

(A5) Rβν;λ +Rµβνλ;µ −Rβλ;ν = 0,

where we have taken into account that the covariant derivative of gµν vanishes, im-

plying that the multiplication with the components of the metric tensor commutes
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with covariant differentiation; in particular, index raising and lowering commutes

with covariant derivatives. Contracting Eq. (A5) once again with gβν , we get

(6-A) gβν(Rβν;λ +Rµβνλ;µ −Rβλ;ν) = 0.

Using the results of Exercise 1, we get

(A7) gβνRβνλ;µ = −gβνgαµRαβνλ;µ = −gβνgαµRβανλ;µ = −gµαRαλ;µ = −Rµλ;µ

Inserting this into the second term in (A6) we obtain

(A8) R ;λ −Rµλ;µ −R
ν
λ;ν = 0.

Note that since R is a scalar, R;µ = ∂µR. An equivalent form of the previous

equation is

(2Rµλ − δ
µ
λR)

;µ
= 0.

Raising the index λ and dividing by 2 finally leads to

(A9)
(
Rµν − 1

2
gµνR

)
;µ

= 0.

Einstein’s gravitational field equations are written simply as

(A10) Gµν = 8π
G

c4
Tµν ,

where G on the right-hand side (not to be confused with Einstein’s tensor!) is

Newton’s gravitational constant and Tµν is the stress-energy (energy-momentum)

tensor. It describes the distribution of matter and energy in space-time. For ex-

ample, the electromagnetic field gives a contribution to Tµν defined by TEMµν =

ε0F
λ
µ Fλν + ε0

4 gµνF
λωFλω.

Another example is the energy-momentum tensor of a perfect fluid .A perfect

fluid is characterized by a 4-velocity field u, a scalar density field ρ0 and a scalar

pressure field p. The energy-momentum tensor is defines as

Tµν = (ρ0 + p)uµuν − pgµν .

A special case of this is p = 0 which can be viewed as the energy momentum tensor

of a flow of noninteracting dust particles. Normally p and ρ0 are not independent
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but they are related by the equation of state of the form p = p(ρ0, T ), where T

is the temperature. The requirement that the covariant divergence of the energy-

momentum tensor vanishes leads to equations of motion for the perfect fluid. In

fact, in case of Minkowski space-time and in a certain limit one gets the classical

Navier-Stokes equations (from ∂µTµk = 0 for k = 1, 2, 3),

ρ

[
∂u
∂t

+ (u · ∇)u
]

= −∇p

and the continuity equation (from ∂µTµ0 = 0),

∂ρ

∂t
+∇ · (ρu) = 0.

Here ρ = ρ0(1− u2).

Let S be some space-like surface with a time-like unit normal vector field nµ,

n0 > 0. Then, ∫
S

(−det g)1/2Tµνnν d
3x

gives the energy and momentum contained in S. Equation (

In order to avoid convergence problems with the infinite integrals, we assume

that all energy and momentum are contained in a compact region K in space-

time. Consider a surface S, consisting of two space-like components S1 and S2

and some surface S3 ‘far away’ such that T vanishes on S3. Using Gauss’ law and

the current conservation, we conclude that the surface integral of (−det g)1/2T νµnν

over S vanishes. In other words,∫
S1

(−det g)1/2T νµnν d
3x =

∫
S2

(−det g)1/2T νµnν d
3x.

We have taken into account that, since n is future pointing, one of the normal

vector fields on S1 and S2 is outward directed and the second inward directed.

Equation ( ) tells us that the stress-energy, in the µ-direction, on S1 is the same

as the corresponding quantity on S2; one could think of Si as a fixed time slice at

time ti and one obtains the usual law of conservation of energy or momentum.

Often one uses units in which G = 1 and c = 1 so that one does not need to

write explicitly the coefficient G/c4 in Einstein’s equations.

The Newtonian Limit
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It is known that the Newtonian gravitational theory is valid for fields, which

can produce only velocities much smaller than the velocity of light. Since the

components T 0i and T ij are related to spatial momenta and T 00 is related to

energy, this condition says that |T 00| is much larger than the other components.

Because of Einstein’s equations, the same is true for the components of the Einstein

tensor. Furthermore, we expect that for weak gravitational fields the metric gµν

differs slightly from the Minkowski metric ηµν ,

gµν = ηµν + hµν

for a small perturbation hµν . Next, we compute the connection, curvature, and

finally the Ricci tensor to first order in the perturbation hµν . A straight-forward

computation, starting from the definitions of the various tensors, gives Gµν =

− 1
2�(hµν − 1

2η
µνh), where h = ηµνh

µν . Thus, Einstein’s equations, in this approx-

imation, are linear,

−1
2
�

(
hµν − 1

2
ηµνh

)
= 8π

G

c4
Tµν .

Taking into account the remark in the beginning of this section, only the 00-

component is relevant,

�

(
h00 − 1

2
h

)
= −16π

G

c2
ρ,

where ρ = T 00/c2 is the matter density in the rest system of the source. We can

also drop the time derivatives (in the system of coordinates, where the source is

slowly moving, because ∂0 = 1
c∂t) and so the only relevant equation becomes

∇2

(
h00 − 1

2
h

)
= 16π

G

c2
ρ.

This means that,

h00 − 1
2
h =

4
c2
φ,

where φ is the gravitational potential for the matter distribution ρ. (Compare Eq.

(62) with the Newtonian equation ∇2φ = 4πGρ, where φ = −GM/r!)

Since all the other components of hµν − 1
2η
µνh vanish at this order of approxi-

mation, we finally get

hµµ =
2
c2
φ = −2GM

c2r
(no summation!)
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for all µ = 0, 1, 2, 3.

Next, we shall compute the geodesics for the metric gµν = ηµν+hµν in the linear

approximation (we neglect higher order terms in hµν). For small velocities, the time

component ẋ0(s) of the 4-velocity is much larger than the spatial components. For

this reason, we can approximate the geodesic equations of motion as

d2xµ

ds2
+ Γµ00

(
dx0

ds

)2

= 0.

In the linear approximation,

Γ0
00 = ∂0φ, Γi00 = ∂iφ.

Thus, the geodesic equations become

ẍ0 + ∂0φ(ẋ0)2 = 0, ẍi + ∂iφ(ẋ0)2 = 0.

In the coordinate system, where the source is at rest, the first equation says that

we can choose the time t as the geodesic parameter, x0(s) = s = ct, and then the

second equation becomes

ẍi = −∂iφ.

The right-hand side (after multiplication by the mass m of the test particle) is the

gravitational force of the source on m, so this equation is just Newton’s second law,

ma = F, where F = −∇Φ and Φ = mφ.

The Schwarzschild Metric

The basic problem in Newtonian celestial mechanics is to solve the equations of

motions outside of a spherically symmetric mass distribution (orbits of the planets

around the Sun, orbits of satellites around the Earth). In general relativity the

first natural problem is to search for spherically symmetric solutions of Einstein’s

equations.

Actually, there is a unique 1-parameter family of spherically symmetric solutions,

which are asymptotically flat, meaning that at large distances from the source the

metric tends to the flat Minkowski metric ds2 = dx2
0− dx2

1− dx2
2− dx2

3. This is the

content of Birkhoff’s theorem (which we are not going to prove). The line element

of the metric is given as

(A11) ds2 =
(

1− 2GM
c2r

)
dx2

0 −
(

1− 2GM
c2r

)−1

dr2 − r2dΩ2,
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where dΩ2 is the angular part of the Euclidean metric in R3, dΩ2 = dθ2 +sin2 θ dφ2.

It is clear from ( ) that for large distances r the metric approaches the Minkowski

metric. The line element is called the Schwarzschild metric.

When r > 2GM/c2 the Schwarzschild metric is supposed to describe the gravi-

tational field outside of a spherically symmetric star. The other disconnect region

r < 2GM/c2 is the Schwarzschild black hole. The singularity at r = 2GM/c2 is

actually due to a bad choice of coordinates. There is a way to glue the inside so-

lution in a smooth way to the outside solution by a suitable choice of coordinates;

the complete discussion of this was first given by Kruskal and Szekeres in 1960.

The Kruskal–Szekeres metric is given as follows. The coordinates are denoted by

(u, v, θ, φ). The latter two are the ordinary spherical coordinates on a unit sphere.

The coordinates (u, v) are restricted to the region L ⊂ R2 defined by

uv <
2GM
c2e

.

The metric is then

ds2 =
16µ2

r
e(2µ−r)/2µdudv − r2dΩ2,

where µ = MG/c2 and r is a function of u, v defined by

uv = (2µ− r)e(r−2µ)/2µ.

Note that f(x) = xex/a is monotonically increasing when x > −a (and f(x) >

−a/e) and therefore y = f(x) has a unique solution x for any y > −a/e. We treat

u as a kind of universal time; a time-like vector is future directed if its projection to

∂u is positive. The orientation (needed in integration!) is defined by the ordering

(v, u, θ, φ) of coordinates. Note that the radial null lines (radial light rays) are given

by du = 0 or dv = 0.

The Kruskal–Szekeres space-time can be divided into four regions: K1 consists

of points v > 0, u < 0, region K2 of points u, v > 0, in region K4 we have u, v < 0,

and finally region K3 is characterized by u > 0, v < 0. The boundaries between

these regions are non-singular points for the metric. The only singularities are at

the boundary uv = 2µ/e.

The region K1 is equivalent with the outer region of a Schwarzschild space-time.

This is seen by performing the coordinate transformation (v, u, θ, φ) 7→ (t, r, θ, φ),
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where r = r(u, v) as above and the Schwarzschild time is t = 2µ ln(−v/u). With a

similar coordinate transformation the region K3 is seen to be equivalent with the

outer Schwarzschild solution. The region K2 is equivalent with the Schwarzschild

black hole. The equivalence is obtained through the coordinate transformation

(v, u, θ, φ) 7→ (t, r, θ, φ), where r = r(u, v) is the same as before but now t =

2µ ln(v/u).

It is easy to construct smooth time-like curves which go from either K1 or K3 to

the black hole K2. However, we shall prove that once an observer falls to the black

hole there is no way to go back to the ‘normal’ regions K1 and K3.

Let x(t) be the time-like path of the observer. Then along the path

dr

dt
=
∂r

∂u

du

dt
+
∂r

∂v

dv

dt
=

r

8µ2
e(r−2µ)/2µ

[
∂r

∂u
g(∂v, x′(t)) +

∂r

∂v
g(∂u, x′(t))

]
< 0,

since x(t) is time-like and in K2 holds r ∂r∂u = −2µve(2µ−r)/2µ < 0 and similarly for

the v-coordinate.

The boundary between K2 and the normal regions is r = 2µ (i.e., u = 0 or

v = 0). The function r(x(t)) was seen to be decreasing, and therefore the path

x(t) can never hit the boundary r = 2µ. But the observer entering K2 has a

deplorable future, since it will eventually hit the true singularity r = 0, again using

the monotonicity of the function r(x(t)).

There is also another singularity, the outer boundary of region K3. But this is

of no great concern because it is in the past; no future directed time-like curve can

enter that singularity.
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CHAPTER 4: PRINCIPAL BUNDLES

4.1 Lie groups

A Lie group is a group G which is also a smooth manifold such that the mul-

tiplication map G × G → G, (a, b) 7→ ab, and the inverse G → G, a 7→ a−1, are

smooth.

Actually, one can prove (but this is not easy) that it is sufficient to assume

continuety, smoothness comes free. (This was one of the famous problems listed

by David Hilbert in his address to the international congress of mathematicians

in 1900. The result was proven by A. Gleason, D. Montgomery and L. Zippin in

1952.)

Examples The vector space Rn is a Lie group. The group multiplication is just

the addition of vectors. The set GL(n,R) of invertible real n× n matrices is a Lie

group with respect to the usual matrix multiplication.

Theorem 4.1.1. Any closed subgroup of a Lie group is a Lie group.

The proof is complicated. See for example S. Helgason: Differential Geometry,

Lie Groups and Symmetric Spaces, section II.2.

The theorem gives an additional set of examples of Lie groups: The group of real

orthogonal matrices, the group of complex unitary matrices, the group of invertible

upper triangular matrices ....

For a fixed a ∈ G in a Lie group we can define a pair of smooth maps, the left

translation la : G→ G, la(g) = ag, and the right translation ra : G→ G, ra(g) = ga.

We say that a vector field X ∈ D1(G) is left (resp. right) invariant if (la)∗X = X

(resp. (ra)∗X = X) for all a ∈ G.

Since the left (right) translation is bijective, a left (right) invariant vector field is

uniquely determined by giving its value at a single point, at the identity, say. Thus

as a vector space, the space of left invariant vector fields can be identified as the

tangent space TeG at the neutral element e ∈ G.

Theorem 4.1.2. Let X,Y be a pair of left (right) invariant vector fields. Then

[X,Y ] is left (right) invariant.
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Proof. Denote f = la : G→ G. Recall that

X ′
i = (f∗X)i =

∂yi

∂xj
Xj ,

where we have written the map f in terms of local coordinates as y = y(x). Then

[X ′, Y ′]i = X ′j∂′jY
′i − Y ′j∂′jX ′i = Xj∂jY

′i − Y j∂jX ′i

= Xj∂j(
∂yi

∂xk
Y k)− Y j∂j(

∂yi

∂xk
Xk)

=
∂yi

∂xk
(Xj∂jY

k − Y j∂jXk) +
∂2yi

∂xj∂xk
(XjY k − Y jXk).

The second term on the right vanishes since the second derivative is symmet-

ric. Thus we have [X ′, Y ′] = [X,Y ]′, i.e., [(la)∗X, (la)∗Y ] = (la)∗[X,Y ]. Thus the

commutator is left invariant.

It follows that the left invariant vector field form a Lie algebra. This Lie algebra

is denoted by Lie(G) and it is called the Lie algebra of the Lie group G. Observe

that dimLie(G) = dimTgG = dimG.

Example 1 Let G = Rn. The property that a vector field X = Xi∂
i is left (right)

invariant means simply that the coefficient functions Xi(x) are constants. Thus left

invariant vector fields can be immediately identified as vectors (X1, . . . , Xn) in Rn.

Constant vector fields commute, thus Lie(Rn) is a commutative Lie algebra.

Example 2 Let G = GL(n,R). Let X be a left invariant vector field and

z = X(1) = d
dte

tz|t=0. Then

X(g) =
d

dt
getz|t=0 = gz.

This implies that

(X · f)(g) =
d

dt
f(getz)|t=0 = (

d

dt
getz)ij |t=0

∂

∂xij
f(x)|x=g = gikzkj

∂

∂gij
f.

When Y is another left invariant vector field with w = Y (1), then

[X,Y ] = [gikzkj
∂

∂gij
, glmwmp

∂

∂glp
]

= gikzkjwjp
∂

∂gip
− glmwmpzpj

∂

∂glp

= gik[z, w]kp
∂

∂gip
.
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That is, the commutator of the vector fields X,Y is simply given by the com-

mutator [z, w] of the parameter matrices.

Example 3 The group SO(n) ⊂ GL(n,R) of rotations in Rn. Each antisym-

metric matrix L defines a 1-parameter group of rotations by R(t) = etL. The

tangent vector of this curve at t = 0 is L. We can define a left invariant vector field

as above as X(g) = gL. The commutator of a pair of antisymmetric matrices is

again antisymmetric. The condition that L is antisymmetric is necessary in order

that it is tangential to the orthogonal group at the identity: Take a derivative of

R(t)tR(t) = 1 at t = 0! Thus the Lie algebra of SO(n) consists precisely of all

antisymmetric real n × n matrices. When n = 2 we recover the 1-dimensional

group of rotations in the plane (the Lie algebra is commutative) and when n = 3

we get the 3-dimensional group of rotations in R3 and its Lie algebra is the angular

momentum algebra.

The complex unitary group U(n) has as its Lie algebra the algebra of antiher-

mitean matrices. This is shown by differentiating R(t)∗R(t) = 1 at t = 0 for

R(t) = etL. The Lie algebra of SU(n) is given by antihermitean traceless matrices.

Here SU(n) ⊂ U(n) is the subgroup consisting of matrices of unit determinant.

In the case of a matrix Lie group we have an exponential mapping exp : Lie(G)→

G from the Lie algebra to the corresponding Lie group, which is given through the

usual power series expansion eX = 1 + X + 1
2!X

2 . . . . This is because the left

invariant vector fields are parametrized by the value of the tangent vector at the

identity which is equal to the derivative of a 1-parameter group of matrices at the

identity. The exponential mapping, which has a central role in Lie group theory,

can be generalized to arbitrary Lie groups. If X is a left invariant vector field on

the group then, at least locally, there is a unique curve g(t) with g(0) = 1 and

g′(t) = X(g(t)) by the theory of first order differential equations. In fact, it is easy

to see that this solution is actually globally defined by a use of group multiplication.

Since X is left invariant we have g′(t) = `g(t) · X(1), that is, X(1) = `−1
g(t) · g

′(t).

The exponential mapping is then defined as

eX = g(1).

See S. Helgason, Chapter II, for more details.
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Exercise Prove with the help of the chain rule of differentiation that etXesX =

e(t+s)X in every Lie group, for real t, s and for any left invariant vector field X.

Let X1, . . . , Xn be a basis of Lie(G). Then

[Xi, Xj ] = ckijXk

for some numerical constants ckij , the so-called structure constants. Since the Lie

bracket is antisymmetric we have ckij = −ckji and by the Jacobi identity we have

ckijc
m
kl + cklic

m
kj + ckjlc

m
ki = 0

for all i, j, l,m. In terms of the left invariant vector fields Xi, any tangent vector v

at g ∈ G can be written as v = viXi(g). Let us define θi ∈ Ω1(G) as θi(g)v = vi.

We compute the exterior derivative dθi :

dθi(g)(Xj , Xk) = Xjθ
i(Xk)−Xkθ

i(Xj)− θi([Xj , Xk])

= Xjδik −Xkδij − θi(cljkXl) = −cijk.

On the other hand,

(θi ∧ θj)(Xk, Xl) = θi(Xk)θj(Xl)− θi(Xl)θj(Xk) = δikδjl − δilδjk.

Thus we obtain Cartan’s structural equations,

dθi = −1
2
ciklθ

k ∧ θl.

Denote Xiθ
i = g−1dg. This is a Lie(G)-valued 1-form on G. It is tautological at

the identity: (g−1dg)(v) = v for v ∈ T1G. For θ = g−1dg the structural equations

can be written as

dθ +
1
2

[θ ∧ θ] = 0,

where [θ ∧ θ] = [Xi, Xj ]θi ∧ θj .

A left action of a Lie group G on a manifold M is a smooth map G×M →M,

(g, x) 7→ gx, such that g1(g2)x = (g1g2)x for all gi, x and 1 · x = x when 1 is the

neutral element. Similarly, one defines the right action as a map M × G → M,

(x, g) 7→ xg, such that x(g1g2) = (xg1)g2 and x · 1 = x.

The (left) action is transitive if for any x, y ∈M there is an element g ∈ G such

that y = gx and the action is free if for any x, gx = x only when g = 1. The action
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is faithful if gx = x for all x ∈M only when g = 1. The isotropy group at x ∈M is

the group Gx ⊂ G of elements g such that gx = x.

Example 1 Let H ⊂ G be a closed subgroup of a Lie group G. Then the left

(right) multiplication on G defines a left (right) action of H on G.

Example 2 Let H ⊂ G be a closed subgroup in a Lie group. Then the space

M = G/H of left cosets gH is a smooth manifold, see S. Helgason, section II.4.

There is a natural left action given by g′ · (gH) = g′gH. In general, when G acts

transitivly (from the left) on a manifold M, we can write M = G/H with H = Gx

for any fixed element x ∈M. The bijection φ : G/H →M is given by φ(gH) = gx.

For example, when G = SO(3) and H = SO(2) the quotient M = SO(3)/SO(2)

can be identified as the unit sphere S2. Similarly, SU(3)/SU(2) can be identified as

the sphere S5. The sphere S5 is equal to the set of points (z1, z2, z3) ∈ C3 such that

|z1|2 + |z2|2 + |z3|2 = 1. The point (1, 0, 0) is left invariant exactly by the elements

in the subgroup SU(2) ⊂ SU(3) operating in the z2z3-plane. On the other hand,

SU(3) acts transitivly on S5 and so S5 = SU(3)/SU(2).

Let a left action of a Lie group G on a manifold M be given. Then for each

X ∈ Lie(G) there is a canonical vector field X̂ onM defined by X̂(x) = d
dte

tX ·x|t=0.

Similarly, a right action gives a canonical vector field by differentiating x · etX . In

the case when M = G and the left action is given by the left multiplication on the

group, we have simply X̂ = X.

A Lie group G acts on itself also through the formula g 7→ g0gg
−1
0 for g0 ∈ G.

This is called the adjoint action and is denoted by Adg0(g) = g0gg
−1
0 . Note that the

adjoint action is a left action. Because of Adg0(1) = 1, the derivative of the adjoint

action at g = 1 gives a linear map, denoted by adg0 , from T1G to T1G, that is, we

may view adg as a linear map

adg : Lie(G)→ Lie(G).

In the case of a matrix Lie group we have simply adg(X) = gXg−1, matrix multi-

plication. Thus we have also

adg([X,Y ]) = [adg(X), adg(Y )]

for all X,Y ∈ Lie(G). This holds also in the case of an arbitrary Lie group. This

means that adg is an automorphism of the Lie algebra of G.
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Exercise Prove the above statement for an arbitrary Lie group.

We also observe, by the the chain rule for differentiation, that adgg′ = adg ◦ adg′

for all g, g ∈ G. This means that the map g 7→ adg is a representation of the Lie

group in the vector space Lie(G).

4.2. Definition of a principal bundle and examples

Let G be a Lie group and M a smooth manifold. A principal G bundle over M

is a manifold which locally looks like M ×G.

Definition 4.2.1. A smooth manifold P is a principal G bundle over the manifold

M, if a smooth right action of G on P is given, i. e., a map P×G→ P , (p, g) 7→ pg,

such that p(gg′) = (pg)g′∀p ∈ P and g, g′ in G, and if there is given a smooth map

π : P →M such that

(1) π(pg) = π(p) for all g in G.

(2) ∀x ∈ M there exists an open neighborhood U of x and a diffeomorphism

(local trivialization) f : π−1(U) → U × G of the form f(p) = (π(p), φ(p))

such that φ(pg) = φ(p)g ∀p ∈ π−1(U), g ∈ G.

The manifold P is the total space of the bundle, M is the the base space, and π is

the bundle projection. The trivial bundle P = M ×G is defined by the projection

π(x, g) = x and by the natural right action of G on itself.

Consider two bundles Pi = (Pi, πi,Mi;G) with the same structure group G. A

smooth map φ : P1 → P2 is a G bundle map , if φ(pg) = φ(p)g for all p and g. Two

bundles P1 and P2 are isomorphic if there is a bijective bundle map P1 → P2. An

isomorphism of a bundle onto itself is an automorphism .

If H ⊂ G is a closed subgroup then G is a principal H bundle over the homoge-

neous space G/H. The right action of H on G is just the right multiplication in G

and the projection is the canonical projection on the quotient.

Example 4.2.2. Take G = SU(2) and H = U(1)

H :
(
eiϕ 0
0 e−iϕ

)
, ϕ ∈ R.

A general element g of G is

g =
(
z1 −z2

z2 z1

)
,
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with |z1|2 + |z2|2 = 1. Writing z1 and z2 in terms of their real and imaginary parts

we see that the group G can be identified with the unit sphere S3 in R4. We can

define a map π : G → S2 by π(g) = gσ3g
−1, where σ3 is the matrix diag(1,−1);

elements of R3 are represented by Hermitian traceless 2×2 matrices. The Euclidean

metric is given by ‖x‖2 = −detx. The kernel of the map π is precisely U(1); thus

we have a U(1) fibration over S2 = SU(2)/U(1) in S3.

Exercise 4.2.3. Let S+ = {x ∈ S2|x3 6= −1} and S− = {x ∈ S2|x3 6= +1}.

Construct local trivializations f± : π−1(S±)→ S± × U(1).

The bundle S3 → S2 is nontrivial; it is not isomorphic to S2×S1 for topological

reasons. Namely, S3 is a simply connected manifold whereas the fundamental group

of S2×S1 is equal to π1(S1) = Z [M. Greenberg: Lectures on Algebraic Topology].

Let {Uα}α∈Λ be an open cover of the base space M of a principal bundle P and

let p 7→ (π(p), φα(p)) ∈ Uα×G be a set of local trivializations. If p ∈ π−1(Uα∩Uβ),

we can write

φα(p) = ξαβ(p)φβ(p),

where ξαβ(p) ∈ G. Now φα(pg) = φα(p)g and φβ(pg) = φβ(p)g from which follows

that ξαβ(pg) = ξαβ(p) and thus ξαβ can be thought of as a function on the base

space Uα∩Uβ . If p ∈ π−1(Uα∩Uβ ∩Uγ) and x = π(p), then φα(p) = ξαβ(x)φβ(p) =

ξαβ(x)ξβγ(x)φγ(p) so that

ξαβ(x)ξβγ(x) = ξαγ(x).

In general, a collection of G-valued functions {ξαβ} for the covering {Uα} is a one-

cocycle (with values in G) if the above equation holds for all x in Uα ∩Uβ ∩Uγ and

for all triples of indices.

If we make the transformations φ′α = ηαφα for some functions ηα : Uα → G,

then

ξαβ 7→ ξ′αβ = η−1
α ξαβηβ .

If we can find the maps ηα such that ξ′αβ = 1∀α, β, then ξαβ = ηαη
−1
β and we say

that the one-cocycle ξ is a coboundary.

Let (P, π,M), (P ′, π′,M ′) be a pair of principal G bundles and let f : P → P ′

be a bundle map. We define the induced map f̂ : M → M ′ by f̂(x) = π′(f(p)),

where p is an arbitrary element in the fiber π−1(x).
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Theorem 4.2.4. Let P and P ′ be a pair of principal G bundles over M. Let

{Uα, φα}α∈Λ (respectively, {Uα, φ′α}α∈Λ) be a system of local trivializations for P

(respectively, for P ′). Let ξαβ and ξ′αβ be the corresponding transition functions.

Then there exists an isomorphism f : P → P ′ such that f̂ = idM if and only if the

transition functions differ by a coboundary, that is, ξ′αβ(x) = ηα(x)−1ξαβ(x)ηβ(x)

in Uα ∩ Uβ for some functions ηα : Uα → G.

Proof. 1) Suppose first that ξ′αβ = η−1
α ξαβηβ for all α, β ∈ Λ. Define f : P → P ′ as

follows. Let p ∈ P and x = π(p). Choose α ∈ Λ such that x ∈ Uα. Using a local

trivialization (Uα, φ′α) at x we set f(p) = (x, fα(p)), where fα(p) = ηα(x)−1φα(p).

We have to show that the map is well-defined: If x ∈ Uα ∩ Uβ then φβ(p) =

ξβα(x)φα(p) and thus

fβ(p) = ηβ(x)−1φβ(p) = ηβ(x)−1ξβα(x)φα(p)

= ξ′βα(x)[ηα(x)−1φα(p)] = ξ′βα(x)fα(p).

We conclude that (x, fα(p)) and (x, fβ(p)) represent the same element in P ′. The

equation f(pg) = f(p)g follows from φα(pg) = φα(p)g.

2) Let f : P → P ′ be an isomorphism. We can define

ηα(x) = φα(p)φ′α(f(p))−1,

where p ∈ π−1(x) is arbitrary. It follows at once from the definition of the transition

functions that the collection {ηα}α∈Λ satisfies the requirements.

Let {ξαβ}α,β∈Λ be a one-cocycle with values in G, subordinate to an open cover

{Uα} on a manifold M . We can construct a principal G bundle P from this data.

Let C = q(α,Uα×G) be the disjoint union of all the sets Uα×G. Define an equiva-

lence relation in C by (α, x, g) ∼ (α′, x′, g′) if and only if x = x′ and g′ = ξα′α(x)g.

Set P = C/ ∼. The action of G in P is given by (α, x, g)g0 = (α, x, gg0). The

smooth structure on P is defined such that the sets Uα ×G are smooth coordinate

charts for P .

Exercise 4.2.5. Complete the construction of P above.

Let (P, π,M) be a principal G bundle. A (global) section of P is a map ψ : M →

P such that π ◦ ψ = idM .

Exercise 4.2.6. Show that a principal bundle is trivial if and only if it has a

global section.
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A local section consists of an open set U ⊂ M and a map ψ : U → P such

that π ◦ ψ = idU . If f : π−1(U) → U × G is a local trivialization we can define a

local section by ψ(x) = f−1(x, h(x)), where h : U → G is an arbitrary (smooth)

function.

Let H ⊂ G be a closed subgroup. We say that the bundle P has been reduced

to a principal H subbundle Q, if Q ⊂ P is a submanifold such that qh ∈ Q for all

q ∈ Q, h ∈ H,π(Q) = M and H acts transitively in each fiber Qx = π−1(x) ∩Q.

Any manifold M of dimension n carries a natural principal GL(n,R) bundle,

namely, the bundle FM of linear frames. The fiber FxM at a point x ∈M consists

of all frames (ordered basis) of the tangent space TxM . The group GL(n,R) acts

in FxM by (f1, f2, ..., fn)A = (
∑n
i=1Ai1fi,

∑n
i=1Ai2fi, ...,

∑n
i=1Ainfi), where the

fi’s are tangent

vectors at x and A = (Aij) ∈ GL(n,R). One can construct a local trivialization

by choosing a local coordinate system (x1, x2, ..., xn) in M . In local coordinates

the vectors of a frame f can be written as fi =
∑
fij∂j . This defines a mapping

f 7→ (fij) ∈ GL(n,R). The collection (∂1, ..., ∂n) of vector fields defines a local

section of FM .

If the manifold M has some additional structure the bundle FM can generally be

reduced to a subbundle. For example, if M is a Riemannian manifold with metric g,

then we can define the subbundle OFM ⊂ FM consisting of orthonormal frames

with respect to the metric g. If in addition M is oriented, then it makes sense to

speak of the bundle SOFM of oriented orthonormal frames: A frame (f1, . . . , fn)

at a point x is oriented if ω(x; f1, . . . , fn) is positive, where ω is a n form defining

the orientation. The structure group of OFM is the orthogonal group O(n) and of

SOFM the special orthogonal group SO(n) consisting of orthogonal matrices with

determinant=1.

Let g be the Lie algebra of the Lie group G. To any A ∈ g there corresponds

canonically a one-parameter subgroup hA(t) = exp tA. We define a vector field

Â on the G bundle P such that the tangent vector Â(p) at p ∈ P is equal to
d
dt [p · hA(t)]|t=0. Let g ∈ G be any fixed element. The right translation rg(p) = pg

on P determines canonically a transformation X 7→ (rg)∗X on vector fields: The

tangent vector of the transformed field at a point p is simply obtained by applying

the derivative of the mapping rg to the tangent vector X(pg−1).
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Proposition 4.2.7. For any A ∈ g the vector field Â is equivariant, that is,

(rg)∗Â = âd−1
g A∀g ∈ G.

Proof. Using a local trivialization,

Â(p) =
d

dt
(π(p), φ(petA))

∣∣∣∣
t=0

and therefore

((rg)∗Â)(p) = Tpg−1rg ·
d

dt
(π(pg−1), φ(pg−1etA))

∣∣∣∣
t=0

=
d

dt
(π(pg−1), φ(pg−1etAg))

∣∣∣∣
t=0

=
d

dt
(0, φ(petad

−1
g A))

∣∣∣∣
t=0

= âd−1
g A(p).

4.3. Connection and curvature in a principal bundle

Let E and M be a pair of manifolds, V a vector space and π : E →M a smooth

surjective map.

Definition 4.3.1. The manifold E is a vector bundle over M with fiber V , if

(1) Ex = π−1(x) is isomorphic with the vector space V for each x ∈M

(2) π : E → M is locally trivial: Any x ∈ M has an open neighborhood U

with a diffeomorphism φ : π−1(U)→ U × V , φ(z) = (π(z), ξ(z)), where the

restriction of ξ to a fiber Ex is a linear isomorphism onto V .

The product M × V is the trivial vector bundle over M , with fiber V . In this

case the projection map M ×V →M is simply the projection onto the first factor.

A direct sum of two vector bundles E and F over the same manifold M is the

bundle E ⊕ F with fiber Ex ⊕ Fx at a point x ∈ M. The tensor product bundle

E ⊗ F is the vector bundle with fiber Ex ⊗ Fx at x ∈M.

Example 4.3.2. The tangent bundle TM of a manifold M is a vector bundle

over M with fiber TxM ' Rn, where n = dimM . The local trivializations are given

by local coordinates: If (x1, x2, ..., xn) are local coordinates on U ⊂ M , then the
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value of ξ for a tangent vector w ∈ TxM , x ∈ M , is obtained by expanding w in

the basis defined by the vector fields (∂1, ..., ∂n).

A section of a vector bundle E is a map ψ : M → E such that π ◦ ψ = idM .

The space Γ(E) of sections of E is a linear vector space; the addition and multi-

plication by scalars is defined pointwise. A principal bundle may or may not have

global sections but a vector bundle always has nonzero sections. A section can be

multiplied by a smooth function f ∈ C∞(M) pointwise, (fψ)(x) = f(x)ψ(x).

Let (P, π,M) be a principal G bundle. The space V of vertical vectors in the

tangent bundle TP is the subbundle of TP with fiber {v ∈ TpP |π(v) = 0} at

p ∈ P . If P is trivial, P = M ×G, then the vertical subspace at p = (x, g) consists

of vectors tangential to G at g. In general, the dimension of the fiber Vp is equal

to dimG.

Definition 4.3.3. A connection in the principal bundle P is a smooth distribution

p 7→ Hp of subspaces of Tp such that

(1) The tangent space Tp is a direct sum of Vp and Hp ∀p ∈ P

(2) The distribution is equivariant, i.e., rgHp = Hpg ∀p ∈ P, g ∈ G.

Smoothness means that the distribution can be locally spanned by smooth vec-

tor fields. We shall denote by prh (respectively, prv) the projection in Tp to the

horizontal subspace Hp (respectively, vertical subspace Vp).

Let A ∈ g and let Â be the corresponding equivariant vector field on P . The

field Â is vertical at each point. Since the group G acts freely and transitively on

P , the mapping A 7→ Â(p) is a linear isomorphism onto Vp for all p ∈ P . Thus for

each X ∈ TpP there is a uniquely defined element ωp(X) ∈ g such that

ω̂p(X) = prvX

at p. The mapping ωp : TpP → g is linear, thus defining a differential form of

degree one on P , with values in the Lie algebra g. The form ω is the connection

form of the connection H.

Proposition 4.3.4. The connection form satisfies

(1) ωp(Â(p)) = A∀A ∈ g,

(2) r∗aω = adaω ∀a ∈ G.



58 JOUKO MICKELSSON

Furthermore, each g-valued differential form on P which satisfies the above condi-

tions is a connection form of a uniquely defined connection in P .

Proof. The first equation follows immediately from the definition of ω. To prove

the second, we first note that

̂(ad−1
a A)(p) =

d

dt
petad

−1
a A|t=0 =

d

dt
pa−1etAa|t=0 = raÂ(pa−1).

By the equivariantness property of the distribution Hp, the right translations ra

commute with the horizontal and vertical projection operators. Thus [we write (A)̂
for Â in case of long expressions]

(adaωp(X)) (̂p) = r−1
a · ω̂p(X)(pa)

= r−1
a (prvX)(pa) = prv(r−1

a X)(pa)

= (ωp(r−1
a X)) (̂pa).

Taking account that (r∗aω)p(X) = ωpa(raX) we get the second relation.

Let then ω be any form satisfying both equations. We define the horizontal

subspaces Hp = {X ∈ Tp|ωp(X) = 0}. If X ∈ Hp ∩ Vp, then X = Â(p) for some

A ∈ g and ωp(Â(p)) = A = ωp(X) = 0, from which follows Hp ∩ Vp = 0. By (1)

and a simple dimensional argument we get Tp = Hp + Vp. For X ∈ Hp and a ∈ G

we obtain

ωpa(raX) = (r∗aω)p(X) = adaωp(X) = 0,

and therefore raX ∈ Hpa, which shows that the distribution Hp is equivariant and

indeed defines a connection in P .

Let ω be a connection form in (P, π,M). Let U ⊂ M be open and ψ : U → P

a local section. The pull-back A = ψ∗ω is a one-form on U . Consider another

local section φ : V → P and set A′ = φ∗ω. We can write ψ(x) = φ(x)g(x) for

g : U ∩ V → G, where g(x) is a smooth G valued function. We want to relate A to

A′. Noting that

Txψ = rg(x)Txφ+ (g−1Txg) (̂ψ(x))

by the Leibnitz rule, we get

Ax(u) = ωψ(x)(Txψ · u) = ωψ(x)(rg(x)Txφ · u+ (g−1Txg · u) (̂ψ(x)))

= ad−1
g(x)ωφ(x)(Txφ · u) + g−1Txg · u.
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For a matrix group G we can simply write

A = g−1A′g + g−1dg.

The transformation relating A to A′ is called a gauge transformation . Next we

define the two-form

(4.3.5) F = dA+
1
2

[A,A]

on U . The commutator of Lie algebra valued one-forms is defined by

[A,B](u, v) = [A(u), B(v)]− [A(v), B(u)]

for a pair u, v of tangent vectors. We shall compute the effect of a gauge transfor-

mation (U,ψ)→ (V, φ) on F :

F = dA+ 1
2 [A,A]

= g−1dA′g − [g−1dg, g−1A′g]− 1
2 [g−1dg, g−1dg]

+ 1
2 [g−1A′g + g−1dg, g−1A′g + g−1dg]

= g−1(dA′ + 1
2 [A′, A′])g = g−1F ′g.

The curvature form F is a pull-back under ψ of a gobally defined two-form Ω on

P . The latter is defined by

Ωp(u, v) = a−1Fx(πu, πv)a,

where p ∈ π−1(x), u, v tangent vectors at p and a ∈ G is an element such that

p = ψ(x)a. The left-hand side does not depend on the local section. Writing

p = φ(x)a′ = ψ(x)g(x)a′ we get

a′−1F ′x(πu, πv)a′ = a′−1g(x)−1Fx(πu, πv)g(x)a′ = a−1Fx(πu, πv)a.

Since A is the pull-back of ω and F is the pull-back of Ω we obtain from 4.3.5

(4.3.6) Ω = dω +
1
2

[ω, ω]

Exercise 4.3.7. Prove the Bianchi identity dF + [A,F ] = 0. (The 3-form [A,F ]

is defined by an antisymmetrization of [A(u), F (v, w)] with respect to the triplet

(u, v, w) of tangent vectors.)
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Let (P, π,M) be a principal G bundle and ρ : G→ AutV a linear representation

of G in a vector space V . We define the manifold P×GV to be the set of equivalence

classes P×V/ ∼, where the equivalence relation is defined by (p, v) ∼ (pg−1, ρ(g)v),

for g ∈ G. There is a natural projection θ : P ×G V → M , [(p, v)] 7→ π(p).

The inverse image θ−1(x) ∼= V , since G acts freely and transitively in the fibers

of P . The linear structure in a fiber θ−1(x) is defined by [(p, v)] + [(p, w)] =

[(p, v + w)], λ[(p, v)] = [(p, λv)]. Local trivializations of P ×G V are obtained from

local trivializations p 7→ (π(p), φ(p)) ∈ M × G of P by [(p, v)] 7→ (π(p), ρ(φ(p))v).

Thus P ×G V is a vector bundle over M , the vector bundle associated to P via the

representation ρ of G.

Example 4.3.8. Let P = SU(2),M = S2 = SU(2)/U(1), G = U(1), V = C

and ρ(λ) = λ2 for λ ∈ U(1). The associated vector bundle E = SU(2)×
U(1)

C is in

fact the tangent bundle of the sphere S2. The isomorphism is obtained as follows.

Fix a linear isomorphism of C ∼= R2 with the tangent space of S2 at the point x,

which has as its isotropy group the given U(1). The map E → TS2 is defined by

(g, v) 7→ D(g)v, where D(g) is the 2-1 representation of SU(2) in R3. The tangent

vectors of S2 are represented by vectors in R3 by the natural embedding S2 ⊂ R3.

4.4. Parallel transport

Let H be a connection in a principal G bundle (P, π,M). A horizontal lift of a

smooth curve γ(t) on the base manifold M is a smooth curve γ∗(t) on P such that

the tangent vector γ̇∗(t) is horizontal at each point on the curve and π(γ∗(t)) = γ(t).

Lemma 4.4.1. Let X(t) be a smooth curve on the Lie algebra g of G, defined on

an interval [t0, t1]. Then there exists a unique smooth curve a(t) on G such that

ȧ(t)a(t)−1 = X(t)∀t ∈ [t0, t1] and such that a(t0) = e.

Proof. See Kobayashi and Nomizu, vol. I, p. 69.

Proposition 4.4.2. Let γ(t) be a smooth curve on M and p an element in the

fiber over γ(t0). Then there exists a unique horizontal lift γ∗(t) of γ(t) such that

γ∗(t0) = p.

Proof. Choose first any (smooth) curve φ(t) on P such that π(φ) = γ and φ(t0) = p.
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We are looking for the solution in the form γ∗(t) = φ(t)g(t), where g(t) is a curve

on G such that g(t0) = e. Now γ∗(t) is a solution if

γ̇∗(t) = rg(t) · φ̇(t) + (g(t)−1ġ(t)) [̂φ(t)g(t)]

is horizontal. Let ω be the connection form of the connection H. A tangent vector

on P is horizontal if and only if it is in the kernel of ω. We get the differential

equation

0 = ω(γ̇∗(t)) = ω(rg(t)φ̇(t)) + ω([g(t)−1ġ(t)] [̂φ(t)g(t)])

= ad−1
g(t)ω(φ̇(t)) + g(t)−1ġ(t).

Applying adg to this equation we get

ġ(t)g(t)−1 = −ω(φ̇(t)).

The solution g(t) exists and is unique by the previous lemma.

Example 4.4.3. Let P = M×U(1), M simply connected. A connection form ω

can be written as ω(x,g)(u, a) = Ax(u)+g−1 ·a, where u is a tangent vector at x ∈M

and a is a tangent vector at g ∈ U(1); the Lie algebra of U(1) is identified by the set

of purely imaginary complex numbers. Let γ(t) be a curve on M . The horizontal

lift of γ(t) which goes through (γ(t), g) at time t = 0 is γ∗(t) = (γ(t), g(t)) with

g(t) = g · exp
(∫ t

0

−Aγ(s)(γ̇(s))ds
)
.

In particular, for a closed contractible curve, γ(0) = γ(1), we get by Stokes’s theorem

g(1) = g · exp(−
∫
S

F ),

where F = dA is the curvature two-form and the integration is taken over any

surface on M bounded by the closed curve γ.

We define the parallel transport along a curve γ(t) on M as a mapping τ :

π−1(x0) → π−1(x1) (x0 = γ(t0), x1 = γ(t1) points on the curve). The value τ(p0)

for p0 ∈ π−1(x0) is given as follows: Let γ∗(t) be a horizontal lift of γ(t) such that

γ∗(t0) = p0. Then τ(p0) = γ∗(t1).

Exercise 4.4.4. Prove the following properties of the parallel transport.

(1) τ ◦ rg = rg ◦ τ∀g ∈ G
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(2) If γ1 is a path from x0 to x1 and γ2 is a path from x1 to x2 then the parallel

transport along the composed path γ2 ∗γ1 is equal to the product of parallel

transport along γ1 followed by a parallel transport along γ2.

(3) The parallel transport is a one-to-one mapping between the fibers π−1(x0)

and π−1(x1).

4.5. Covariant differentiation in vector bundles

Let E be a vector bundle over a manifold M with fiber V , dim V = n. The vector

space V is defined over the field K = R or K = C. A vector bundle can always be

thought of as an associated bundle to a principal bundle. Namely, let Px denote the

space of all linear frames in the fiber Ex for x ∈ M. Using the local trivializations

of E it is not difficult to see that the spaces Px fit together and form naturally a

smooth manifold P . Fix a basis w = {w1, . . . , wn} in Ex. Then any other basis of

Ex can be obtained from w by a linear tranformation w′i =
∑
Ajiwj and therefore

Px can be identified with the group GL(n,K) of all linear transformations in Kn; it

should be stressed that this identification depends on the choice of w. However, we

have a well-defined mapping P ×GL(n,K)→ P given by the basis transformations

and this shows that P can be thought of as a principal GL(n,K) bundle over M.

The vector bundle E is now isomorphic with the associated bundle P ×ρ Kn,

where ρ is the natural representation of GL(n,K) in Kn. The isomorphism is defined

as follows. Let w ∈ Px and a ∈ Kn. We set φ(w, a) =
∑
aiwi. This gives a

mapping from P × Kn to E which is obviously linear in a. For a fixed w the

mapping a 7→ φ(w, a) gives an isomorphism between Kn and Ex. Let w′ = w ·g and

a′ = ρ(g−1)a for some g ∈ GL(n,K). We have to show that φ(w′, a′) = φ(w, a);

but this follows immediately from the definitions.

Often the bundle E can be thought of as an associated bundle to a principal bun-

dle with a smaller structure group than the group

GL(n,K). This happens when there is some extra structure in E. For example,

assume there is a fiber metric in E: This means that there is an inner product

< ·, · >x in each fiber Ex such that x 7→< ψ(x), ψ(x) >x is a smooth function for

any (local) section ψ. We can then define the bundle of orthonormal frames in E
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with structure group U(n) in the complex case and O(n) in the real case. The

vector bundle E is now an associated bundle to the bundle of orthonormal frames.

We shall now assume that E is given as an associated vector bundle P ×ρ V to

some principal bundle P , with a connection H, over M. Let G be the structure

group of P. For each vector field X on M we can define a linear map ∇X of the

space Γ(E) of sections into itself such that

(1) ∇X+Y = ∇X +∇Y
(2) ∇fX = f∇X
(3) ∇X(fψ) = (Xf)ψ + f∇Xψ

for all vector fields X,Y , smooth functions f and sections ψ. We shall give the

definition in terms of a local trivialization ξ : U → P , where U ⊂ M is open.

Locally, a section ψ : M → E can be written as

ψ(x) = (ξ(x), φ(x)),

where φ : U → V is some smooth function. Let A denote the pull-back ξ∗ω of the

connection form ω in P . The representation ρ of G in V defines also an action of

the Lie algebra g in V . We set

∇Xψ = (ξ,Xφ+A(X)φ),

where A(X) is the Lie algebra valued function giving the value of the one-form A

in the direction of the vector field X.

We have to check that our definition does not depend on the choice of the local

trivialization. So let ξ′(x) = ξ(x) · g(x) be another local trivialization, where g :

U → G is a smooth function. The vector potential with respect to the trivialization

ξ′ is A′ = g−1Ag + g−1dg. Now (ξ, φ) ∼ (ξ′, φ′), where φ′ = g−1φ (we simplify the

notation by dropping ρ) and therefore (ξ′, Xφ′ +A′(X)φ′) is equal to

(ξ′,−g−1(Xg)g−1φ+ g−1Xφ+ (g−1Ag + g−1Xg)g−1φ)

= (ξ′, g−1(Xφ+A(X)φ)) ∼ (ξ,Xφ+A(X)φ)

which shows that ∇X is well-defined.

Exercise 4.5.1. Prove that ∇X defined above satisfies (1)-(3).
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The commutator of the covariant derivatives ∇X is related to the curvature of

the connection in the following way:

[∇X ,∇Y ]ψ = (ξ, [X +A(X), Y +A(Y )]φ)

= (ξ, ([X,Y ] +X ·A(Y )− Y ·A(X) + [A(X), A(Y )])φ)

= (ξ, (F (X,Y ) + [X,Y ] +A([X,Y ]))φ)

where F = dA+ 1
2 [A,A]. Thus we can write

[∇X ,∇Y ]−∇[X,Y ] = F (X,Y )

when acting on the functions φ.

A section ψ is covariantly constant if ∇Xψ = 0 for all vector fields. From the

above commutator formula we conclude that one can find at each point in the base

space a local basis of covariantly constant sections of the vector bundle if and only

if the curvature vanishes.

4.6. An example: The monopole line bundle

Construction of the basic monopole bundle

Let G be a Lie group and g its Lie algebra. Let us denote by `g the left translation

`g(a) = ga in G. The left invariant Maurer-Cartan form θL = g−1dg is the g-valued

one form on G which sends a tangent vector X at g ∈ G to the element `−1
g X ∈ TeG

in the Lie algebra. Similarly, we can define the right invariant Maurer-Cartan form

θR = dgg−1, θR(g;X) = r−1
g X. By taking commutators, we can define higher

order forms. For example, the form [g−1dg, g−1dg] sends the pair (X,Y ) of tangent

vectors at g to 2[`−1
g X, `−1

g Y ] ∈ g.

Taking projections to one dimensional subspaces of g we get real valued one-

forms on G.

Let < ·, · > be a bilinear form on g and σ ∈ g. Then α =< σ, g−1dg > is a

well-defined one form. Let us compute the exterior derivative of α. Let X,Y be a

pair of left invariant vector fields on G. Now

dα(g;X,Y ) = X · α(Y )− Y · α(X)− α([X,Y ])

= −α([X,Y ])
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since α(Y )(g) =< σ, `−1
g Y > is a constant function on G and similarly for α(X).

Since the left invariant vector fields on a Lie group span the tangent space at each

point, we conclude

dα = − < σ, 1
2 [g−1dg, g−1dg] > .

We have not yet defined the exterior derivative of a Lie algebra valued differential

form, but motivated by the computation above we set

d(g−1dg) = −1
2

[g−1dg, g−1dg].

A bilinear form < ·, · > on g is invariant if

< [X,Y ], Z >= − < Y, [X,Z] >

for all X, Y, and Z. Given an invariant bilinear form, the group G has a natural

closed three-form c3 which is defined by

c3(g;X,Y, Z) =< `−1
g X, [`−1

g Y, `−1
g Z] > .

Thus

c3 =< g−1dg, 1
2 [g−1dg, g−1dg] > .

Proposition 4.6.1. dc3 = 0.

Proof.. Recall the definition of the exterior differentiation d: If ω is a n-form and

V1, ..., Vn+1 are vector fields, then

dω(V1, ..., Vn+1) =
n+1∑
i=1

(−1)i+1Vi · ω(V1, ..., V̂i, ..., Vn+1)

+
∑
i<j

(−1)i+jω([Vi, Vj ], V1, ..., V̂i, ..., V̂j , ..., Vn+1),

where the caret means that the corresponding variable has been dropped. Let

us compute dc3 for left invariant vector fields X1, ..., X4. Taking account that

c3(Xi, Xj , Xk) is a constant function we get

dc3(X1, ...X4) =− 2 < [X1, X2], [X3, X4] > +2 < [X1, X3], [X2, X4] >

− 2 < [X1, X4], [X2, X3] >

=2 < X1, [[X3, X4], X2]− [[X2, X4], X3] + [[X2, X3], X4] >

=0



66 JOUKO MICKELSSON

by Jacobi’s identity.

If G is a group of matrices we can define an invariant form on g by < X,Y >=

trXY. Then the form c3 can be written as

c3 = tr (g−1dg)3.

As an example we shall consider in detail the case G = SU(2). Let σ3 =(
i 0

0 −i

)
and define the one-form α = − 1

2 trσ3g
−1dg. Remember that SU(2) →

SU(2)/U(1) = S2 is a principal U(1) bundle. The form α is invariant with respect

to right translations g 7→ gh by h ∈ U(1). Thus α is a connection form in the bundle

SU(2) [the Lie algebra of the structure group U(1) can be identified with iR]. Let

us compute the curvature. The exterior derivative of α is 1
4 trσ3[g−1dg, g−1dg].

A tangent vector at x ∈ S2 can be represented by a tangent vector `gX at g ∈

π−1(x) , X ∈ g, such that X is orthogonal to the U(1) direction, trσ3X = 0.

The curvature in the base space S2 is then Ω(X,Y ) = 1
2 trσ3[X,Y ]. The form

Ω is 1
2× the volume form on S2: If {X,Y} is an ortonormal system at x ∈ S2,

then [X,Y ] = ± i
2σ3 (exercise), the sign depending on the orientation. We obtain

Ω(X,Y ) = ± i
4 trσ2

3 = ± i
2 .

The basic monopole line bundle is defined as the associated bundle to the bundle

SU(2)→ S2, constructed using the natural one dimensional representation of U(1)

in C.

Embedding S2 ⊂ R3 and using Cartesian coordinates {x1, x2, x3} we can write

the curvature form as

Ω =
1

4r3
εijkxidxj ∧ dxk,

where r2 = x2
1 + x2

2 + x2
3 is equal to 1 on S2. However, we can extend Ω to the

space R3 \{0} using the above formula. The coefficients of the linearly independent

forms dx2 ∧ dx3, dx3 ∧ dx1 and dx1 ∧ dx2 form a vector ~B = 1
2r3 (x1, x2, x3) = ~x

r3 .

The field ~B satisfies

(1) ~∇ · ~B = 0

(2) ~∇× ~B = 0,



DIFFERENTIAL GEOMETRY AND PHYSICS 67

i.e., it satisfies Maxwell’s equations in vacuum. On the other hand,

(3)
∫
S2

~B · d~S = 2π

for any sphere containing the origin. Because of these properties, the field ~B can

be interpreted as the magnetic field of a magnetic monopole located at the origin.

The integral (3) multiplied by the dimensional constant 1/e (e is the unit electric

charge) is called the monopole strength.

The first Chern class

The magnetic field of the monopole is the curvature of a circle bundle over the

unit sphere S2. The circle bundle we have constructed is a ”generator” for the

set of all circle bundles over S2. In general, a principal U(1) bundle over S2 can

be constructed from the transition function ξ : S− ∩ S+ → U(1) (cf. 3.2.3). The

intersection of the coordinate neighborhoods S± is homeomorphic with the product

of an open interval with the circle S1. It follows that the set of maps ξ decomposes

to connected components labelled by the winding number of a map S1 → U(1).

Let ξ1 be the transition function of the bundle SU(2) → S2 with respect to some

fixed local trivializations on S±. The winding number of ξ1 is equal to one. The

winding number of ξn = (ξ1)n is equal to n. Let P (n) be the bundle constructed

from ξn. Let A± be the vector potentials on S± corresponding to the chosen local

trivializations and the connection in SU(2) described above.

We have A+ = A− + ξ−1dξ on S− ∩ S+ and therefore nA+ = nA− + ξ−1
n dξn.

Thus nA is a connection in the bundle P (n) and the curvature of P (n) is n times

the curvature form Ω of the (basic) monopole bundle. The monopole strength of

the bundle P (n) is 2πn/e.

The cohomology class [Ω] ∈ H2(S2,R) is the first Chern class of the bundle.

It depends only on the equivalence class of the bundle and not on the chosen

connection; we shall return to the proof of the topological invariance of the Chern

classes in a more general context later, but as an illustration of the general ideas

we give a simple proof for the case at hand. Let B± be the vector potentials on S±

of some connection in the bundle P (n). We have B+ = B−+nξ−1dξ and therefore

A+−B+ = A−−B− on S+∩S−. It follows that A−B is a globally defined one-form
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on S2; the difference of the curvatures corresponding to the connections A and B

is equal to d(A−B).

The first Chern class of a circle bundle (or an associated complex line bundle)

over a manifold M can be evaluated from the knowledge of the U(1) valued tran-

sition functions [R. Bott and L.W. Tu: Differential forms in algebraic topology].

In the example above we needed only one transition function ξ. A representative

Ω for the Chern class can be constructed from a vector potential (A+, A−) such

that A− = 0 for x3 <
1
2 , A+ is equal to ξ−1dξ on the strip − 1

2 < x3 <
1
2 , and A+

is contracted smoothly to zero when approaching the north pole x3 = 1. The first

Chern class is always quantized in the sense that the integral of the two-form Ω

over any two-dimensional compact surface is 2π times an integer.

4.7. Chern classes

We shall consider polynomials P (A) of a complex N × N matrix variable A

which are invariant in the sense that P (gAg−1) = P (A) for all g ∈ GL(N,C). For

example, if we expand

(4.7.1) det
(

1 +
λ

2πi
A

)
=

N∑
n=0

λnPn(A)

then the coefficients Pn(A) are homogeneous invariant polynomials of degree n in

A. These polynomials will play a special role in the following discussion.

To each homogeneous polynomial P (A) one can associate a unique symmetric

multilinear form P (A1, . . . An) such that P (A, . . . , A) = P (A). The general formula

for the n linear form in terms of P (A) is

P (A1, . . . , An) =
1
n!
{P (A1 + · · ·+An)

−
∑
j

P (A1 + · · ·+ Âj + · · ·+An)

+
∑
j<j′

P (A1 + . . . Âj + . . . Âj′ · · ·+An)− . . . },

with Âj deleted. When P (A) is invariant we clearly have P (gA1g
−1, . . . , gAng

−1) =
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P (A1, . . . , An). Writing g = g(t) = exp(tX) we get the useful formula

0 =
d

dt
P (g(t)A1g(t)−1, . . . , g(t)Ang(t)−1)|t=0

=
∑
j

P (A1, . . . , [X,Aj ], . . . , An).(4.7.2)

If Fi is a N ×N matrix valued differential form of degree ki on a manifold M ,

1 ≤ i ≤ n, and P a symmetric n linear form then we can define a complex valued

differential form P (F1, . . . , Fn) of degree k1 + · · ·+ kn = p by

P (F1, . . . , Fn)(t1, . . . , tp) =(∏ 1
ki!

)∑
σ

ε(σ)P (F1(tσ(1), . . . , tσ(k1)), . . . , Fn(tσ(p−kn+1), . . . , tσ(p)))

where the sum is taken over all permutations of the indices 1, 2, . . . , p.

Let F be the curvature form of a vector bundle E over M with fiber CN . The cur-

vature transforms in a change of a local trivialization as F 7→ gFg−1 and therefore

P (F, . . . , F ) is well-defined, independent of the local trivialization, for any invariant

symmetric polynomial P.

Proposition 4.7.3. The symmetric homogeneous polynomial P (F,

. . . , F ) of degree n in the curvature F is a closed form of degree 2n.

Proof. Locally we can write Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. Using the property

d(α ∧ β) = dα ∧ β + (−1)degαα ∧ dβ of differential forms we have

dP (F, . . . , F ) =
∑
j

P (F, . . . , dF, . . . , F )

=
∑
j

{P (F, . . . ,DF, . . . , F )− P (F, . . . , [A,F ], . . . , F )}.(4.7.4)

The covariant derivative DF = 0 by the Bianchi identity and the sum of the terms

involving [A,F ] is zero by (4.7.2).

In particular, the class in H2n(M,R) defined by the closed 2n form Re Pn(F ) is

called the nth Chern class of the bundle E and is denoted by cn(E).

Theorem 4.7.5. The Chern classes are topological invariants: They do not depend

on the choice of connection in the vector bundle E.

Proof. Let A0 and A1 be two connections in E and F0, F1 the corresponding curva-

tures. Define a one-parameter family At = A0 +tη of connections with η = A1−A0;
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note that the difference η transforms homogeneously in a change of local trivializa-

tion, η 7→ gηg−1. Let us introduce the notation Q(A,B) = nP (A,B, . . . , B) when

B is repeated n− 1 times. Using

Ft = dAt +
1
2

[At, At] = F0 + tDη +
1
2
t2[η, η],

where D is the covariant derivative determined by A0, we get

(4.7.6)
d

dt
P (Ft) = Q

(
d

dt
Ft, Ft

)
= Q (Dη,Ft) + tQ([η, η], Ft).

On the other hand,

dQ(η, Ft) =Q(dη, Ft)− n(n− 1)P (η, dFt, Ft, . . . , Ft)
(4.7.7)

=Q(dη, Ft)− n(n− 1)P (η, dFt, Ft, . . . , Ft)

+ nP ([A0, η], Ft, . . . , Ft)− n(n− 1)P (η, [A0, Ft], . . . , Ft)

=Q(Dη,Ft)− n(n− 1)P (η,DFt, Ft, . . . , Ft)

=Q(Dη,Ft) + tn(n− 1)P (η, [η, Ft], Ft, . . . , Ft)

where we have used DFt = DF0 + tD2η+ t2[Dη, η] = t[F0, η] + t2[Dη, η] = t[Ft, η],

since [[η, η], η] = 0 by Jacobi identity. By (4.7.2) we have

P ([η, η], Ft, . . . , Ft)− (n− 1)P (η, [η, Ft], Ft, . . . , Ft) = 0

or in other words,

Q([η, η], Ft)− n(n− 1)P (η, [η, Ft], Ft, . . . , Ft) = 0.

Using (4.7.7) we get

dQ(η, Ft) = Q(Dη,Ft) + tQ([η, η], Ft)

and with (4.7.6) we obtain

(4.7.8)
d

dt
P (Ft) = dQ(η, Ft).

Integrating this result over the interval 0 ≤ t ≤ 1 we get

P (F1)− P (F0) = d

∫ 1

0

Q(η, Ft)dt
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which shows explicitly that the difference of the differential forms P (F1) and P (F0)

is an exact form.

Given a Hermitian inner product in the fibers of the vector bundle E it is always

possible to choose a Hermitian connection, that is, a connection such that in an

orthonormal basis the vector potential takes values in the Lie algebra of the uni-

tary group U(N). In that case the determinant det(1 + λ
2πiF ) is real for any real

parameter λ and the Chern classes are given by the expansion in powers of λ; the

first two positive powers lead to

c1(F ) =
1

2πi
trF

c2(F ) =
1

2(2πi)2
[−trF 2 + (trF )2].

The coefficients in the expansion can be best computed by diagonalizing the matrix

F. Writing F = diag(α1, . . . , αN ) one obtains

det
(

1 +
λ

2πi
F

)
=
∏
k

(
1 +

λαk
2πi

)
=
∑
n

(
λ

2πi

)n
Sn(α)

with

S0 = 1, S1 = trα, S2 =
1
2

(trα)2 − 1
2

trα2

S3 =
1
6

(trα)3 − 1
2

trα2 trα+
1
3

trα3

etc. Note that cn vanishes identically if n > 1
2dimM or n > N. If n = 1

2dimM

then we can integrate the form cn(E) over M and the value of the integral is called

the Chern number associated to the vector bundle E.

Example 4.7.9. Consider a vector bundle E over M = S4 such that the

transition functions take values in the group SU(N), N ≥ 2. Dividing S4 to the

upper and lower hemispheres S4
± the bundle is given by the transition function φ

along the equator S3. The vector potentials A± are then related by A− = φA+φ
−1−

dφφ−1 on the equator. Using the formula trF 2 = dtr (F ∧A− 1
3A

3) we can compute
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the Chern number corresponding to the second Chern class,

1
8π2

∫
S4

+

trF 2
+ +

1
8π2

∫
S4
−

trF 2
−

=
1

8π2

∫
S3

[
tr (F+ ∧A+ − 1

3A
3
+)− tr (F− ∧A− − 1

3A
3
−)
]

=
1

8π2

∫
S3

[
tr 1

3 (dφφ−1)3 − dtr (A+ ∧ dφφ−1)
]

=
1

24π2

∫
S3

tr (dφφ−1)3.

Remark 4.7.10. The value of the integral above is an integer which depends

only on the homotopy class of the map φ : S3 → SU(N). This follows from the fact

that the form tr (dgg−1)3 on any Lie group is closed (section 4.6) and from Stokes’

theorem applied to the integral
∫ 1

0
dt ddt

∫
S3 tr (dφtφt−1)3 for a 1-parameter family

of maps φt;S3 → SU(N).

Since the equivalence class of the bundle E depends only on the homotopy class

of the transition function φ, the Chern number
∫
c2(E) gives a complete topological

characterization of E.

The Chern character ch(E) of a vector bundle is defined as follows. It is a formal

sum of differential forms of different degrees,

ch(E) = tr exp
(

1
2πi

F

)
,

where again F is the curvature form of E. When the exponential is evaluated as a

power series we obtain

ch(E) =
∞∑
k=0

1
(2πi)kk!

trF k.

Clearly all the terms can be expressed using the Chern classes; the three first terms

are

ch(E) = N + c1(E) +
1
2
c1(E) ∧ c1(E)− c2(E) + . . . .

The Chern character is a convenient tool because one has

ch(E ⊕ E′) = ch(E) + ch(E′) ch(E ⊗ E′) = ch(E) · ch(E′).

This follows immediately from the definition and the elementary properties of the

exponential function.
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Above we have studied characteristic classes of complex vector bundles. The

most important characteristic classes for real vector bundles are the Pontrjagin

classes and they are constructed as follows.

Let π : E → M be a real vector bundle over the manifold M. We can always

think a real vector bundle as an associated vector bundle to a principal bundle P

with structure group GL(n,R). We fix a metric in the fibers of E, so it makes sense

to speak about orthonormal frames in the fibers. This means that we can consider

E as an associated bundle to a principal O(n) bundle; the principal bundle is simply

the bundle of orthonormal frames.

Thus we are led to studying connections in principal O(n) bundles. A connection

form takes values in the Lie algebra of O(n), that is, in the Lie algebra of real

antisymmetric n× n matrices.

If we choose a local section of the principal O(n) bundle then the curvature

form F is a local matrix form on the base space M and in gauge transformations

F ′ = g−1Fg.

A real antisymmetric matrix can be brought to the canonical form

T−1FT =


0 λ1 0 . . . 0
−λ1 0 0 . . . 0

0 0 0 λ2 . . . 0
0 0 −λ2 0 . . . 0

. . . . . . . . .
. . . . . . . . .

 .

When n = 2k is even the matrix consist of k antisymmetric 2× 2 matrices on the

diagonal; when n = 2k + 1 then the last column and the last row consists of only

zeros. The eigenvalues of the matrix are ±iλj .

We define

p(F ) = det
(

1 +
F

2π

)
=

k∏
i=1

(
1 +

λ2
i

4π2

)
.

Clearly p(F ) = p(−F ) so that p is a polynomial of even degree in the curvature

tensor F. We write

p(F ) = 1 + p1(F ) + p2(F ) + . . .

as a sum of homogeneous terms pj(F ) of degree 2j in the curvature. Since F is a

2-form, pj(F ) is a differential form on M of degree 4j.
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Note that pj(F ) depends only on the eigenvalues of Fµν and therefore it is

invariant with respect to gauge transformations and thus gives a globally well-

defined form on M.

Exactly as in the case of Chern classes we expand each pj in powers of the

curvature tensor F. The lowest Pontrjagin classes are

p1(F ) = −1
2

(
1

2π
)2trF 2

p2(F ) =
∑
i<j

(
λi
2π

)2(
λj
2π

)2 =
1
2

[
(
∑
i

λ2
i

(2π)2
)2 −

∑
i

(
λi
2π

)4

]

=
1
8

(
1

2π
)4
[
(trF 2)2 − 2trF 4

]
p3(F ) =

∑
i<j<k

(
λi
2π

)2(
λj
2π

)2(
λk
2π

)2 = . . .

=
1
48

(
1

2π
)6
[
−(trF 2)3 + 6trF 2 · trF 4 − 8trF 6

]
.

We shall meet later another set of characteristic classes, called the A-roof genus,

which are actually formed from the Pontrjagin classes. The definition is best set

up in terms of eigenvalues of the matrix form F,

Â(F ) =
∏
j

xj/2
sinh(xj/2)

=
∏
j

(
1 +

∑
`

(−1)`
22` − 2
(2`)!

B` x
2`
j

)
,

where B` are the Bernoulli numbers and xj = λj/2π. In terms of Ponrjagin classes,

Â(F ) = 1− 1
24
p1 +

1
5760

(7p2
1 − 4p2) +

1
967680

(−31p3
1 + 44p1p2 − 16p3) + . . . .

Further reading: Nakahara, Chapters 9-11. The proof above of the topological

invariance of the Chern classes follows S.S. Chern: Complex Manifolds without

Potential Theory. Princeton University Press (1979). On characteristic classes see

also: J.W. Milnor and J.D. Stasheff: Characteristic Classes. Princeton University

Press (1974).
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CHAPTER 5: YANG-MILLS THEORY

5.1 Yang-Mills equations.

Let M be a Riemann manifold with Riemann metric g. In local coordinates

the metric is represented as a symmetric nondegenerate tensor field gij(x) with

i, j = 1, 2, . . . , n, where n = dimM. Let π : P → M be a principal G bundle

over M. Let ρ : G → Aut(V ) be a unitary finite-dimensional representation of

G in V. This defines an associated vector bundle E = P ×ρ V and the curvature

tensor F of a connection in P is represented (locally) by matrix functions Fij(x) =

∂iAj − ∂jAi + [Ai, Aj ] acting on vectors in V.

We shall define raising and lowering of space-time indices (i.e., coordinate indices

in M) as usual, Ai = gijAj , Bi = gijB
j , where the matrix (gij) is the inverse

of (gij). Recall also that the metric g defines a volume form on M, d(volM ) =√
det(g)dx1 ∧ dx2 · · · ∧ dxn. We define the Yang-Mills functional

Y (A) =
1
4

∫
M

trFµνFµνd(volM ).

The Yang-Mills action is invariant under gauge transformations F ′ = g−1Fg. There

is an alternative way to write the YM action as

Y (A) = −1
2

∫
M

trF ∧ ∗F.

The action leads to field equations through Euler-Lagrange variational priciple. Let

A+ tB be a 1-parameter family of vector potentials:

d

dt
Y (A+ tB)|t=0 =

1
2

∫
M

trFµν(∂µBν − ∂νBµ + [Aµ, Bν ] + [Bµ, Aν ])d(volM ).

When M is a manifold without boundary, we can integrate by parts and we get

δY (A) = −
∫
M

trBν(∂µFµν + [Aµ, Fµν ])d(volM ).

If A is an extremal the YM action then we obtain the Yang-Mills equations

DµF
µν = ∂µF

µν + [Aµ, Fµν ] = 0.
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When G is abelian this gives the Maxwell’s equations ∂µFµν = 0 in vacuum. In

addition, we have the Bianchi identities

DµFνλ +DλFµν +DνFλµ = 0

for all indices λ, µ, ν. If there are external sources we have instead

DµF
µν = jν

for some Lie algebra valued current jν .

The Yang-Mills equations is a complicated nonlinear system of second order

partial differential equations. Not much is known about the general solutions.

However, there is a class of solutions which is well understood. These so-called (anti)

instantons are characterized by the (anti) self-duality property F = ∗F (F = −∗F )

in the case of a Riemannian 4-manifold M. Recall that

∗ : Ωk(M)→ Ωn−k(M)

is a linear map and ∗∗ = ±1. When n = 4 and k = 2 the sign is + (exeercise) For

this reason the eigenvalues of ∗ are ±1, when restricted to 2-forms on a 4-manifold.

In the case of Lorentzian metric ∗∗ = −1 on 2-forms and therefore in this case there

are no real eigenvalues (and no real (anti) instantons).

In the case of an instanton we have

Y (A) = −1
2

∫
M

trF ∧ F

and so the value of the YM functional is given by the second Chern class. In

particular, when M = S4 we get

Y (A) ∼
∫
S3

tr (g−1dg)3,

where g : S3 → G is the transition function on the equator. Thus for self-dual

solutions the YM functional is quantized in units (2π)2k with k ∈ Z.

5.2 Dirac equation For each positive integer n we construct a set of complex

2[n/2] × 2[n/2] matrices γi, i = 1, 2, . . . n, with the relations

γγj + γjγi = 2ηij ,
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where η is either the Minkowski or the Euclidean metric. Here [x] is the integer

part of a real number x. The matrices are constructed by induction on n. For n = 1

there is only one 1 × 1 matrix γ1 = 1. The induction from odd to even n is as

follows. The dimension of the matrices is increased by a factor 2. In the case of

Euclidean metric we set

γi 7→
(

0 γi
γi 0

)
for i = 1, 2, . . . , n and we add

γn+1 =
(

0 i
−i 0

)
,

where the blocks are 2(n−1)/2 × 2(n−1)/2 matrices. The induction from even n to

n+ 1 is defined by adding the matrix

γn+1 = (−1)n/4γ1γ2 . . . γn

of same dimension.

In the case of the Minkowski metric there will be some sign changes. In the

induction from odd to even n = 2k we have

γi 7→
(

0 γi
−γi 0

)
where γi for i = 1, 2, . . . , 2k−1 are the Euclidean γ− matrices in 2k−1 dimensions,

and the ’time like’ matrix is defined as

γ0 =
(

0 1
1 0

)
.

In the induction from even n = 2k to 2k + 1 one can take γj for j = 1, 2, . . . , 2k as

i× the Euclidean γ− matrices in 2k dimensions and then set γ0 = eiαγ1 · · · γ2k for

an appropriate phase factor eiα.

The Dirac equation in the flat space Rn is then

(iγµ∂µ +m)ψ = 0,

where ψ : Rn → CN , with N = 2[n/2] and m is a constant which is interpreted as

a mass of the field ψ. Because of the anticommutation relations of the γ− matrices

any solution of the Dirac equation satisfies also the Klein-Gordon equation

(∂µ∂µ +m2)ψ = 0.



78 JOUKO MICKELSSON

Using Fourier transform we can look for solutions of the form u · e−ipµxµ, for some

constant vector u ∈ CN and a momentum vector p ∈ Rn. The Dirac equation

becomes now

(γµpµ +m)u = 0.

The Klein-Gordon equation requires that −p2 +m2 = 0.

Exercise Show that for n = 4, Minkowski metric, and for each momentum

vector p2 = m2 there are exactly two linearly independent solutions of the matrix

equation (γµpµ +m)u = 0.

In a curved space the Dirac equation needs a modification. First, we have to

assume that the space M has a spin structure. This is defined as follows. We shall

discuss the case of a Riemann metric. To begin with, the rotation group SO(n),

for n > 2, has a simply connected double covering Spin(n). That is, there is a onto

2-1 group homomorphism φ : Spin(n) → SO(n). We are looking for a principal

bundle P → M with structure group Spin(n) such that there is a 2-1 onto map

θ : P → LM, where LM is the bundle of orthonormal oriented frames in the tangent

bundle TM. The structure group of the principal bundle LM →M is SO(n). The

map θ should take the fiber Px to the fiber LxM for each x ∈ M and we require

that

θ(pg) = θ(p)φ(g)

for all p ∈ P and g ∈ Spin(n). Such a bundle P is called a spin structure on M.

Not every manifold has a spin structure and if there is a spin structure it does not

need to be unique.

We shall from now on assume that M is a Riemannian spin manifold with a fixed

spin structure.

The group Spin(n) has a (faithful) representation in CN for N = 2[n/2]. The Lie

algebra of Spin(n) is isomorphic with the Lie algebra of SO(n) since the groups are

locally isomorphic. The Lie algebra Lie(SO(n)) consists of real antisymmetric n×n

matrices and it is spanned by matrices Lij = −Lji with commutation relations

[Lij , Lkl] = δjkLil + δilLjk − δikLjl − δjlLik.

The representation in CN is obtained by the mapping Lij 7→ Mij = 1
4 [γi, γj ].

One can then check by direct computation, using the anticommutation relations of
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γ-matrices, that the matricesMij satisfy the same commutation relations as the ma-

trices Lij and thus we indeed have a representation of the Lie algebra Lie(Spin(n))

in CN . The group Spin(n) is simply connected and for this reason the representa-

tion of its Lie algebra can be exponentiated to give a representation of the group

Spin(n). Denote this representation by ρ.

We can now define the Dirac spinor bundle S as the associated bundle S =

Spin(M)×ρCN . Sections of this vector bundle are Dirac spinor fields. We define a

covariant derivative∇µ acting on Dirac spinor field. First, let ea with a = 1, 2, . . . , n

be a local oriented orthonormal basis in the tangent bundle TM. Then

∇µea = Γbµaeb

defines the Christoffel symbols in the basis ea. The Christoffel symbols can be

computed from the fact that ea = eµa∂µ, and so

∇µea = (∂µeνa)∂ν + eνa∇µ∂ν = (∂µeνa)ebνeb + eνaΓλµνe
b
λeb,

where (eaµ) is the inverse to the matrix (eµa). Inserting

Γλµν =
1
2
gλα(∂µgνα + ∂νgµα − ∂αgµν)

we get an explicit expression for the symbols Γbµa. We set

ωµ =
1
2

ΓbµaMab.

The Dirac equation on a curved manifold is then

iγµ(∂µ + ωµ)ψ +mψ = 0.

Here we have defined γµ = eµaγ
a. They satisfy the anticommutation relations

γµγν + γνγµ = 2gµν ,

whereas

γaγb + γbγa = 2δab.

Let E be a complex vector bundle over M with a connection, described locally

by a vector potential Aµ. Consider the tensor product bundle S ⊗ E. The Dirac

equation for sections of the extended bundle is

iγµ(∂µ + ωµ +Aµ)ψ +mψ = 0.
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Here ωµ acts on the first factor and Aµ on the second factor in the tensor product.

To be precise, we should write Aµ 7→ 1⊗Aµ and ωµ → ωµ ⊗ 1.

We also need to fix a hermitean inner product < ·, · >x in the fibers (S ⊗ E)x.

We can then define the Hilbert space H = L2(S ⊗E) of square integrable sections

of the bundle S ⊗ E →M. The inner product for a pair of sections ψ, φ is

< ψ, φ >=
∫
M

< ψ(x), φ(x) >x d(volM ).

Assuming that the gauge group is unitarily represented (the Lie algebra elements

Aµ(x) are antihermitean matrices), in the case of Riemann metric the Dirac oper-

ator is self-adjoint (in an appropriate dense domain) in the Hilbert space H.

5.3 The index of the Dirac operator

Let T : H → H be a linear operator in a Hilbert space H. We set kerT = {x ∈

H|Tx = 0} and cokerT = (TH)⊥. When kerT and cokerT are finite dimensional

then T is a Fredholm operator and its Fredholm index is

indT = dim kerT − dim cokerT.

Example Let T : H → H be defined as Ten = en+1, where {en}n=1,2,... is an

orthonormal basis. Now kerT = 0 and cokerT consists of C · e1. Thus indT = −1.

If T is a Fredholm operator then indT = −indT ∗. This follows from

< y, T ∗x >=< Ty, x > and so T ∗x = 0 if and only if < Ty, x >= 0 for all y,

which is equivalent to x ∈ (TH)⊥ and so kerT ∗ = cokerT. In particular, when T

is self-adjoint the Fredholm index is zero.

Let us study the case of the Dirac operator on an even dimensional manifold

M. In this case we have an hermitean operator Γ with Γ2 = 1 which anticommutes

with D. The chirality operator Γ is defined as γn+1 = eiαγ1 . . . γn for an appropriate

phase factor eiα.

We observe that the nonzero eigenvalues of D come in pairs ±λ because of

D(Γψ) = −ΓDψ = −λ(Γψ) if Dψ = λψ.

The case of the zero eigenvalue is different. We can split the kernel of D to a

pair of subspaces kerD = V− ⊕ V+ where V± are defined by diagonalizing Γ; the
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eigenvalues of Γ are ±1. In general, the dimensions of V± are different. However, in

the case of a compact manifold M all eigenspaces of D are finite dimensional and

we can define the index dimV+ − dimV−. This is in fact the Fredholm index of a

certain operator. Diagonalizing Γ we can write

D =
(

0 D+

D− 0

)
,

where D+ maps to eigenspace of Γ corresponding to the eigenvalue −1 to the

eigenspace +1 and vice-versa for D−.

We have now

indD− = dimV+ − dimV−.

We have D+ = D∗− and so indD+ = −indD−.

In functional analysis one proves that for bounded operators the index of a Fred-

holm operator is a continuous function (in operator norm) of the operator. For this

reason the index is a topological invariant. It remains constant under continuous

deformations of the operator. Although a Dirac operator is always unbounded, one

can still show that its index is a continuous function of the parameters: vector

potentials, choice of Riemann metric etc. For this reason the index indD− depends

only on the homotopy class of the vector bundles S,E and defines a topological in-

variant for the bundles under consideration. On the other hand, we have explicitly

used a metric and a vector potential in the construction of D.

We already know that there are characteristic classes (Chern classes, Pontrjagin

classes) which are topological invariants. For this reason it is not so big surprize

that the index can be expressed in terms of these classes.

Theorem. (Atiyah-Singer)

indD+ =
∫
M

Â(TM) ∧ ch(E).

We cannot prove this theorem here but instead we illustrate the philosophy

behind the index theorems by an explicit calculation.

Let H = H+ ⊕H− be a sum of two infinite-dimensional complex Hilbert spaces

and denote by P+ the projection on H+. Let u : H → H be an invertible operator

such that P+uP+ is a Fredholm operator. We also assume that the trace of [P+, u]

is absolutely converging. We claim that

ind(P+uP+) = tru−1[u, P+].
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To prove this index theorem we need to check that the formula holds for some

selection of operators un with indP+unP+ = n for n ∈ Z. This is sufficient by

the continuity of the index! So we may choose H = L2(S1) and H+ is defined

by nonnegative Fourier modes and H− by negative Fourier modes. We select un

as the multiplication operator by the Fourier mode e−inx. Then it is easy to see

that indP+unP+ = n. On the other hand u−1
n is the multiplication operator by the

function einx and by a simple computation tru−1[u, P+] = n.


