Department of mathematics and statistics
Differential Equations II
Compensating Course Exam 13.1.2015
Remark. Use of an abstract page of the size A4 is allowed to a candidate.

1. Give in a real form a fundamental solution set in \mathbf{R} to the following homogeneous pair:

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right] \mathbf{x}(t)
$$

2. Give a general solution to the following system:

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
0 & 1 / 2 \\
2 & 0
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{c}
3 / 2 \\
4
\end{array}\right]
$$

3. (a, 3 points) Reduce the differential equation

$$
\ddot{x}=-2 \dot{x}+x^{2}+x-2
$$

of second order to an equivalent pair of first order.
(b, 3 points) Solve the critical points of that pair and determine their qualities (stable or unstable) by using the Poincaré theorem.
4. Consider the initial value problem

$$
y^{\prime}=e^{x y}\left(y^{2}-2\right), \quad y(0)=-1
$$

of one differential equation. Let $y: I \rightarrow \mathbf{R}$ a (maximal) solution to it.
(a, 3 points) Show that y is a bounded function.
(b, 3 points) Show that $I=\mathbf{R}$, i.e. that the solution y exists for all $x \in \mathbf{R}$.

