Department of mathematics and statistics
Differential Equations II
Course Exam 16.12.2014
Remark. Use of an abstract page of the size A4 is allowed to a candidate.

1. Give a fundamental solution set in \mathbf{R} to the following homogeneous system:

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right] \mathbf{x}(t)
$$

2. Give a general solution to the following system:

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{c}
2 e^{t} \\
-3 e^{t}
\end{array}\right]
$$

3. (a, 3 points) Reduce the differential equation

$$
\ddot{x}-2 x \cos (\dot{x})+\dot{x}-x^{2}+3=0
$$

of second order to an equivalent pair of first order.
(b, 3 points) Solve the critical points of this pair and determine their qualities by using the Poincaré theorem (stable or unstable).
4. Consider the initial value problem

$$
y^{\prime}=\frac{2 \sin ^{2}(x y)}{x+1}, \quad y(0)=1
$$

of one differential equation. Let $y: I \rightarrow \mathbf{R}$ a (maximal) solution to it. Show that $I=]-1, \infty[$, i.e. that the solution y exists for all $x \in]-1, \infty[$.

