Differential Equations II

Exercise 5, fall 2014

1. Find a fundamental solution set in \mathbf{R} to the following homogeneous system by the matrix method, which uses generalized eigenvectors:

$$
\dot{\mathbf{x}}(t)=A \mathbf{x}(t), \quad A=\left[\begin{array}{ccc}
5 & -4 & 0 \\
1 & 0 & 2 \\
0 & 2 & 5
\end{array}\right] \in \mathbf{R}^{3 \times 3}
$$

2. Solve the linear system

$$
\dot{\mathbf{x}}(t)=A \mathbf{x}(t)+\mathbf{f}(t), \quad A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad \mathbf{f}(t)=\left[\begin{array}{c}
-2 \\
3
\end{array}\right]
$$

by using an appropriate direct try.
3. Solve the linear system

$$
\dot{\mathbf{x}}(t)=A \mathbf{x}(t)+\mathbf{f}(t), \quad A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad \mathbf{f}(t)=\left[\begin{array}{c}
-\sin t \\
\cos t
\end{array}\right],
$$

by using variation. Note that A is the same one as in the previous problem.
4. Solve the linear system

$$
\dot{\mathbf{x}}(t)=A \mathbf{x}(t)+\mathbf{f}(t), \quad A=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right], \quad \mathbf{f}(t)=\left[\begin{array}{c}
-\cos t \\
-\sin t
\end{array}\right],
$$

by using an appropriate direct try.
A tip. A straightforward calculation yields a linear algebraic equation system of size 4×4.
5. Solve the linear system

$$
\dot{\mathbf{x}}(t)=A \mathbf{x}(t)+\mathbf{f}(t), \quad A=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right], \quad \mathbf{f}(t)=e^{3 t}\left[\begin{array}{c}
3 \\
-2
\end{array}\right]
$$

by using variation. Note that A is the same one as in the previous problem. Additionally, what direct try would work here?
6. Solve the linear system

$$
\dot{\mathbf{x}}(t)=A \mathbf{x}(t)+\mathbf{f}(t), \quad A=\left[\begin{array}{ccc}
5 & -4 & 0 \\
1 & 0 & 2 \\
0 & 2 & 5
\end{array}\right], \quad \mathbf{f}(t)=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]
$$

by using an appropriate direct try. A is the same one as in the problem 1.

