Differential Equations II

Exercise 4, fall 2014

1. Form a fundamental solution set in \mathbf{R} to the homogeneous system $\dot{\mathbf{x}}(t)=A \mathbf{x}(t)$, when

$$
A=\left[\begin{array}{cc}
2 & 4 \\
1 & -1
\end{array}\right] \in \mathbf{R}^{2 \times 2}
$$

2. Form a fundamental solution set in \mathbf{R} to the homogeneous system $\dot{\mathbf{x}}(t)=A \mathbf{x}(t)$, when

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right] \in \mathbf{R}^{3 \times 3}
$$

3. Form a fundamental matrix in \mathbf{R} to the homogeneous system $\dot{\mathbf{x}}(t)=A \mathbf{x}(t)$, when

$$
A=\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right] \in \mathbf{R}^{2 \times 2}
$$

Give a real matrix.
4. Form a fundamental solution set in \mathbf{R} to the homogeneous system $\dot{\mathbf{x}}(t)=A \mathbf{x}(t)$, when

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \in \mathbf{R}^{3 \times 3} .
$$

Give a set as real functions.
5. Find a fundamental solution set in \mathbf{R} to the following homogeneous system by the matrix method, which uses generalized eigenvectors:

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
-1 & 1 \\
-1 & -3
\end{array}\right] \mathbf{x}(t)
$$

A tip. Equations (5.31) and (5.32) in the lecture material.
6. Find a fundamental solution set in \mathbf{R} to the following homogeneous system by the matrix method, which uses generalized eigenvectors:

$$
\dot{\mathbf{x}}(t)=A \mathbf{x}(t), \quad A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right] \in \mathbf{R}^{3 \times 3} .
$$

