Differential Equations II

Exercise 3, fall 2014

1. Let the function $\mathbf{z}(t)=(x(t), y(t))$ be a (maximal) solution to the IVP

$$
\dot{\mathbf{z}}(t)=\left[\begin{array}{c}
\dot{x}(t) \\
\dot{y}(t)
\end{array}\right]=\left[\begin{array}{c}
(t+y)\left(x^{2}+y^{2}-1\right) \\
(t-x)\left(x^{2}+y^{2}-1\right)
\end{array}\right], \quad \mathbf{z}(0)=(1 / 2,1 / 2) .
$$

Show by using an analogy to Theorem 4.7 ("Graph Goes Away Theorem of Systems"), that \mathbf{z} is defined in the whole \mathbf{R}.
Tips. Trivial solutions. Can $\|\mathbf{z}(t)\| \geq 1$ hold to the solution? A reason. A figure in the txy cordinate system can be helpful.
2. The general solution in Problem 1 of Exercise 1 has three parameters. Show exactly, that that solution gives all the solutions to the DE in question.
Tips. Theorem 5.4, or if you want to reduce to a system, Theorem 5.3 or 5.5 or perhaps most simply 5.9.
3. Write the following 2×2 homogeneous system traditionally "open" and solve it:

$$
\dot{\mathbf{z}}(t)=\left[\begin{array}{cc}
2 t & 3 t^{2} \\
0 & 2 t
\end{array}\right] \mathbf{z}(t)
$$

How many free parameters do you have? Give some fundamental solution set to the system.
4. Show that the function pair $\left(\mathbf{x}_{1}(t), \mathbf{x}_{2}(t)\right)=\left(\left[1 e^{t}\right]^{T},\left[e^{-t} 2\right]^{T}\right)$ is a fundamental solution set in \mathbf{R} to the linear 2×2 homogeneous system

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
1 & -e^{-t} \\
2 e^{t} & -1
\end{array}\right] \mathbf{x}(t)
$$

5. Write the following linear 2×2 system traditionally "open" and solve it then by the elimination method:

$$
\dot{\mathbf{z}}(t)=\left[\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right] \mathbf{z}(t)+4\left[\begin{array}{l}
1 \\
t
\end{array}\right] .
$$

6. Find by the matrix method a fundamental solution set to the following 3×3 homogeneous system:

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{ccc}
1 & -1 & 4 \\
3 & 2 & -1 \\
2 & 1 & -1
\end{array}\right] \mathbf{x}(t)
$$

