Differential Equations II

Exercise 2, fall 2014

1. Show that the function

$$
f(x, y)=x \sqrt[3]{y+1}
$$

is not uniformly Lipschitz continuous with respect to y in any rectangle K, where $(x,-1) \in K$ for some $x \in \mathbf{R} \backslash\{0\}$ (see Problem 4 in Exercise 1).
2. When considering a planetary orbit in the two body problem, for the angle function $\theta=\theta(t)$ we got the following separable DE

$$
\dot{\theta}(t)=c_{1}\left(K c_{1}^{-2}+c \cos (\theta(t)-\delta)\right)^{2}
$$

where t is time and δ, c, c_{1} and K are constants. Show by the global EU theorem 4.6 (the number in the lecture material) that a (maximal) solution θ to the DE is defined in the whole \mathbf{R}.
Tips. You can choose $y(0)=0$ as an initial condition (any other as well), the Mean Value Theorem.
3. Show by the global EU theorem 4.6 that a (maximal) solution y to the IVP

$$
y^{\prime}=e^{x} \sin x \cos y, \quad y(0)=0,
$$

is defined in the whole \mathbf{R}.
A tip. The Mean Value Theorem.
4. The same problem as 2, but use now the theorem 4.7 ("Graph Goes Away Theorem").
Tips. By the equation $\theta(t)-\theta(0)=\int_{0}^{t} \dot{\theta}(\tau) d \tau$ you can obtain limits to $\theta(t)$. Then use an increasing sequence of rectangles as compact sets.
5. (a) Reduce the $\mathrm{DE} y^{(3)}+x^{3} \cos \left(y^{\prime \prime}\right)+\cos (x) y=\sin x$ to a system of first order.
(b) Reduce the following system of second order to a system of first order and of a normal form:

$$
\begin{aligned}
& m \ddot{x}_{1}(t)+2 k x_{1}(t)-k x_{2}(t)=0 \\
& m \ddot{x}_{2}(t)-k x_{1}(t)+2 k x_{2}(t)=0 .
\end{aligned}
$$

6. (a) Reduce the following system to a system of first order and of a normal form:

$$
\begin{aligned}
\ddot{x} & =f(t, x, y, \dot{x}) \\
\dot{y} & =g(t, x, y) .
\end{aligned}
$$

(b) What about if the second equation was

$$
\ddot{x}=f(t, x, y, \dot{x}, \dot{y}) ?
$$

