Differential Equations II

Exercise 1, fall 2014

1. Solve by adapting the theory of linear equations of second order the following homogeneous equation of third order:

$$
y^{(3)}+4 y^{\prime \prime}+y^{\prime}-6 y=0
$$

A tip. Rational solutions to a polynomial equation by systematical try. It is not necessary to give reasons that all the solutions are obtained.
2. Let $y_{1}: I \rightarrow \mathbf{R}$ and $y_{2}: \rightarrow \mathbf{R}$ be differentiable functions in the interval I such that $W\left(y_{1}, y_{2}\right)(x)=0$ and $y_{1}(x) \neq 0 \neq y_{2}(x)$ for all $x \in I$. Show that the functions y_{1} and y_{2} are then linearly dependent, that is, the equation $c_{1} y_{1}(x)+c_{2} y_{2}(x)=0, x \in I$, is satisfied by some constants c_{1}, c_{2}, where at least one is $\neq 0$.
A tip. Form a differential equation (one) concerning the functions y_{1} and y_{2}.
3. Is the function $f(x, y)=y^{3} \cos x$ uniformly Lipschitz continuous with respect to y in the set $I \times J$, when
(a) $I=[0,1]$ and $J=[0,1]$,
(b) $I=\mathbf{R}$ and $J=[0,1]$,
(c) $I=[0,1]$ and $J=[0, \infty[?$

In a positive case give any valid Lipschitz constant; in a negative case just no is enough.
4. Determine in \mathbf{R}^{2} maximal domains where the DE

$$
y^{\prime}=f(x, y)=x \sqrt[3]{y+1}
$$

satisfies the conditions of the local existence and uniqueness theorem (Theorem 4.4 in the lecture material). Give briefly reasons concerning the conditions, but maximality needs no consideration.
Remark. The function f is defined on the whole $x y$-plane \mathbf{R}^{2}.
5. (a) Give first four Picard's approximations to the IVP

$$
y^{\prime}=-y, y(0)=2 .
$$

(b) Solve the IVP exactly and compare to the Picard's approximations. Observations?
6. (a) Give first four Picard's approximations to the IVP

$$
y^{\prime}=x^{5 / 3} y+1, y(0)=1 .
$$

(b) Solve the IVP also exactly (it remains one unsimplified integral).

