Differential Equation I

Exercise 6, fall 2014

1. Solve the equation

$$
3 y^{\prime \prime}+2 y^{\prime}+y=0 .
$$

2. Solve the equation

$$
\ddot{x}+9 x=4 t-\sin t
$$

by using an appropriate direct try (the method of undetermined coefficients).
3. Solve the equation

$$
\ddot{x}-9 x=e^{-3 t}
$$

by variation. So afterwards, what would have been an appropriate form for a direct try?
4. Solve on the interval $] 0, \infty[$ the homogeneous equation

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\frac{1}{x^{2}} y=0
$$

(a) by a direct try $y(x)=x^{a}$, where a is a parameter,
(b) by changing appropriately the free variable x, that is $x=x(t)$.

Tips. (a) The Euler's formula. (b) A new unknown function is then $z(t)=y(x(t))$. Replace y, y^{\prime} and $y^{\prime \prime}$.
5. Briefly can be seen that $e^{2 x}$ is a solution in \mathbf{R} to the homogeneous equation

$$
(x-2) y^{\prime \prime}-(4 x-7) y^{\prime}+(4 x-6) y=0 .
$$

Find another independent solution by using the method of variation and give also to * a general solution in \mathbf{R}.
6. Extend the problem 5:
(a) Does your general solution give all the solutions to equation * in \mathbf{R} ? Give reasons.
(b) Does the IVP, $*$ with $y(2)=1, y^{\prime}(2)=0$, have a solution? A reason connected to theory?
Tips. (a) You shall need the general theory of homogeneous equations. Continuity. A more difficult question: why does continuity concern also a second derivative of a solution function?

