Differential Equation I

Excercise 5, fall 2014

1. Solve (implicitly) the equation

$$
\frac{d y}{d x}=\frac{-3 x+y+4}{x+3 y+2} .
$$

2. Study by the Wronskian determinant, which of the following function pairs $\left(y_{1}, y_{2}\right)$ can noway be a fundamental solution set on the interval $] 0, \infty[$ for any homogeneous differential equation of second order:

$$
\left(x^{3}, x\right), \quad(\sin 2 x,-\cos 2 x), \quad(\sin 2 x, \cos x) .
$$

3. Consider the following function pairs $\left(y_{1}, y_{2}\right)$:

$$
\left(7 e^{-2 x}, e^{-2 x}\right), \quad\left(-x e^{-2 x},-e^{-2 x}\right), \quad\left(e^{-x},-e^{-2 x}\right)
$$

(a) Determine their Wronskian determinants at the points $x \in \mathbf{R}$.
(b) Which of the pairs do form a fundamental solution set on the interval \mathbf{R} for the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$? Give reasons.
4. Find by the direct try $y(x)=x^{a}$, where a is a parameter, a fundamental solution set on the interval $I=] 0, \infty[$ for the homogeneous equation

$$
y^{\prime \prime}+\frac{4}{x} y^{\prime}-\frac{4}{x^{2}} y=0 .
$$

5. Solve the equations

$$
\text { (a) } 3 \ddot{x}+\dot{x}-2 x=0, \quad \text { (b) } \quad \ddot{x}+4 x=4 \dot{x} \text {. }
$$

6. Solve the IVP

$$
9 y^{\prime \prime}+12 y^{\prime}+4 y=0, \quad y(0)=3, y^{\prime}(0)=-1 .
$$

