Differential Equation I

Excercise 3, fall 2014

1. Solve implicitly the DE

$$
2 x y+\left(2 y^{2}+x^{2}\right) y^{\prime}=0 .
$$

2. Find an integrating factor for the DE

$$
\left(x-y^{2} / 2\right)+x y y^{\prime}=0
$$

and solve it. Can a solution be explicitly represented?
3. A water tank is of a size $16 \mathrm{~m} \times 10 \mathrm{~m} \times 3 \mathrm{~m}$. Initially it is full of 3 per cent brine.
(a) Brine of 1 per cent enters the tank at the rate $1 \mathrm{~m}^{3} / \mathrm{min}$, and the well stirred brine leaves the tank at the same rate. When does the concentration of salt in the tank descend to the level of 2 per cent?
(b) Otherwise the same situation but brine leaves the tank at the rate $1.5 \mathrm{~m}^{3} / \mathrm{min}$.
4. Find the curves of the form $y=y(x)$ such that for all x_{0} a tangent line, set at $\left(x_{0}, y\left(x_{0}\right)\right)$, intersect the x-axis at $\left(x_{0}+x_{0}^{2} / k, 0\right)$, where $k \neq 0$ is a constant.
5. A fish population of a lake was estimated to be 10000 individuals in 1990 and 5000 individuals in 2000. Let us model the fish population $p(t)$ by the logistic equation $\dot{p}(t)=r p(t)(1-p(t) / K)$. Suppose that the parameter r has an estimated value 0.1 (when the unit of time is a year), but the tolerance K of environment is unknown.
(a) Determine K, (b) predict the population in 2010.

Remark. If also r is unknown, at least three known values of population are needed. Consideration yields then a system of equations (an usual system, not differential equations) that (mostly) has to be solve by some numerical method.
6. Let temperatures of a body and its environment be $T_{1}=T_{1}(t)$ and $T_{2}=T_{2}(t)$ as functions of time t, and suppose they interact so that at each moment their rates of change are proportional to the difference $T_{1}(t)-T_{2}(t)$ between temperatures, $a<0$ and $b>0$ as proportional constants (so called the Newton's law of cooling).
(a) Form a pair of differential equations for the functions T_{1} and T_{2}.
(b) Can you solve that?

A tip. (b) Eliminate the pair to one equation.

