Differential Equations I

Exercise 2, fall 2014

1. Solve the differential equations (DE)

$$
\text { (a) } y^{\prime}=2 x+y / x, \quad \text { (b) } \quad y^{\prime}+(\cos x) y=\cos x
$$

2. Solve the DE

$$
2 y+3+(2 x-1) y^{\prime}=0
$$

(a) as a linear, (b) as a separable equation.
3. If possible, reduce the following ones to ordinary differential equations, and if you succeed in it, also solve:

$$
\text { (a) } \quad x y(x)+\int_{0}^{x^{2}} t y(t) d t=1, \quad(b) \quad x y(x)+\int_{0}^{x} t y(t) d t=1
$$

4. Solve the DE

$$
(x-2) y^{\prime}-y=2(x-2)^{3}
$$

by the initial conditions

$$
(a) \quad y(0)=0, \quad(b) \quad y(2)=0, \quad(c) \quad y(2)=1
$$

How can solutions be understood from a point of view of the existence and uniqueness theorem (Theorem 1.2)?
5. Consider the DE

$$
-2 x y^{2}+(1+2 y) y^{\prime}=0
$$

(a) What is wrong with the following deduction:

$$
\begin{aligned}
& -2 x y^{2}+(1+2 y) y^{\prime}=0 \Leftrightarrow c=\int 0=\int-2 x y^{2}+\int y^{\prime}+\int 2 y y^{\prime} \\
& \Leftrightarrow-y^{2} \int 2 x-2 x \int y^{2}+y+y^{2}=-x^{2} y^{2}-(2 / 3) x y^{3}+y+y^{2}=c, \quad c \in \mathbf{R}
\end{aligned}
$$

where the last equation would be an implicit solution.
(b) Solve correctly the equation (implicitly).
6. Show that the DE

$$
y^{-1}+\left(2 y-x y^{-2}\right) y^{\prime}=0
$$

is exact and solve it. Give explicitly an inverse function of solution.

