Differential Equations I

Exercise 1, fall 2014

1. Which of the following ones are ordinary differential equations (DE)? Name also an unknown function and give the order of DE . If possible, reduce the DE also to a normal form.

> (a) $\quad \ddot{x}=(\dot{x}-2)^{2}-t x, \quad$ (b) $\quad x y+\frac{d}{d x}(x y)=x^{2}$ (c) $x y z=\frac{\partial z}{\partial y}-2 x y+y z, \quad(d) \quad y^{\prime}(x)=y(x+1)$ (e) $x^{2} \sin \left(y^{\prime}\right)+y^{(4)} / y=\cos x^{3}, \quad(f) \quad x \sin (\dot{x}) / t=t / \dot{x}$

Remark. In equation (d) all in brackets belongs to an argument of the function.
2. Show that the functions
(a) $y=A e^{x}$,
(b) $y=e^{-x}(A \sin x+B \cos x)$,
(c) $y=A \exp \left(x^{2} / 2\right)$
(A and B constants) are solutions in \mathbf{R} to the differential eguations
(a) $y^{\prime}-y=0$,
(b) $y^{\prime \prime}+2 y^{\prime}+2 y=0$,
(c) $y^{\prime \prime}-x y^{\prime}-y=0$.
3. Show that the function $y=\sin x$ is a solution to the initial value problem (IVP)

$$
y^{\prime}=\sqrt{1-y^{2}}, \quad y(0)=0
$$

What is a maximal (connected) solution interval? Notice that the square root is nonnegative.
4. (a) Let y and z be two different solutions to $\mathrm{DE} 2 y^{\prime}+x-\sin y=0$. Show that they don't intersect, that is, there is no x_{0} where $y\left(x_{0}\right)=z\left(x_{0}\right)$.
A tip. Use a theoretical result.
(b) Can there exist many solutions to IVP $y^{\prime}=\sqrt{1-y^{2}}, \quad y(\pi / 2)=1$? A reason from a theoretical point of view (briefly)?
5. Represent as partial fractions the function

$$
f(x)=\frac{5}{(x+1)(2 x-3)}=\frac{A}{x+1}+\frac{B}{2 x-3},
$$

that is, determine the constants A and B, and also integrate the function.
A tip. Multiply the representation on either side by factors of the denominator.
6. Solve separable ones of the following equations:
(a) $y^{\prime}=\tan (x y-y)$,
(b) $y^{\prime}=2 x+2 x y$,
(c) $y^{\prime}=(y+1)(2 y-3)$.

Nonseparability needs no proof.

