Computational statistics 1 - exercise set 0

Exercise 1 (chapter 1.4): Conditionally on $\Theta=\theta,\left\{Y_{i}\right\}_{i=1}^{n}$ are independent and identically distributed random variables that follow an exponential distribution with rate θ. The density of the exponential distribution is

$$
p(y \mid \theta)=\theta \exp \{-\theta y\}, \quad y>0 .
$$

Let the prior on Θ be a Gamma distribution with shape $\alpha=1$ and rate $\beta=1$. There are two datasets:

1. $n=5$ and $\bar{y}=n^{-1} \sum_{i=1}^{n} y_{i}=0.25$
2. $n=100$ and $\bar{y}=0.25$

For both datasets, plot the prior, likelihood, the product of prior and likelihood as well as the posterior density (which happens to be a Gamma density).

Exercise 2 (chapter 1.4): For the statistical model from Exercise 1, find a closed form formula for the predictive density

$$
p\left(y^{*} \mid y\right)=\int_{\Theta} p\left(y^{*}, \theta \mid y\right) \mathrm{d} \theta=\int_{\Theta} p\left(y^{*} \mid \theta\right) p(\theta \mid y) \mathrm{d} \theta
$$

of a new observation y^{*}. Evaluate and plot the predictive density for the first dataset from Exercise 1 by setting up a grid for the y^{*} values.

Exercise 3 (chapter 2.7): The joint conditional distribution of Y^{*} and Θ factorizes as

$$
p\left(y^{*}, \theta \mid y\right)=p\left(y^{*} \mid \theta\right) p(\theta \mid y)
$$

because the random variables Y and Y^{*} are conditionally independent given $\Theta=\theta$. Derive this results from the multiplication rule for conditional distributions.

Exercise 4 (chapter 2.10): Let the random variable X follow a Gamma distribution with shape $\alpha>0$ and rate $\beta>0$. There is only information about $Y=X^{-1}$. The distribution of Y is the Inverse-Gamma distribution with parameters α and β.

1. Find the density of Y using a change-of-variables:

$$
f_{Y}(y)=f_{X}(x)\left|\frac{\mathrm{d} x}{\mathrm{~d} y}\right|=f_{X}(g(y))\left|g^{\prime}(y)\right| \text { under the bijection } y=h(x) \Leftrightarrow x=g(y)
$$

2. Find a formula for the mode (i.e. the maximum point) of the density of Y
3. Find the expectation $\mathbb{E}[Y]$ assuming $\alpha>1$ using $\mathbb{E}\left[X^{-1}\right]$

Exercise 5 (chapter 2.10): Let the random variables $\left\{X_{i}\right\}_{i=1}^{3}$ follow independently Gamma distribu-
tions with shape $\alpha_{1}, \alpha_{2}, \alpha_{3}>0$ and rate $\beta_{1}=\beta_{2}=\beta_{3}=1$. Using a multivariate change-of-variables

$$
Y_{1}=\frac{X_{1}}{X_{1}+X_{2}+X_{3}} \quad Y_{2}=\frac{X_{2}}{X_{1}+X_{2}+X_{3}} \quad S=X_{1}+X_{2}+X_{3}
$$

find the joint density of Y_{1}, Y_{2} and S. Find also the joint density of Y_{1} and Y_{2} by integrating out S (which happens to be a Dirichlet distribution).

Exercise 6 (chapter 3.2): Let the random variable X follow a Pareto distribution with shape $\alpha>0$ and scale $x_{m}>0$. The density of the Pareto distribution is

$$
f_{X}(x)=\frac{\alpha x_{m}^{\alpha}}{x^{\alpha+1}}, \quad x \geq x_{m}
$$

Derive the inverse transformation method to simulate from the Pareto distribution (there is no function in the standard packages of R).

Exercise 7 (chapter 3.4): Let $f_{X}(x)$ be the density of a continuously distributed random variable X. The cumulative distribution $F_{X}(x)$ and quantile function $F_{X}^{-1}(u)$ with $u \in(0,1)$ are known. Derive the inverse transformation method when the distribution of X is truncated to the interval $I=(a, b)$ with $a<b$. The density of the truncated distribution is proportional to the unnormalized density

$$
g_{X}^{*}(x) \propto f_{X}(x) 1_{(a, b)}(x)
$$

Start by determining the normalizing constant k such that $g_{X}(x)=g_{X}^{*}(x) / k$ is a density and then derive the cumulative distribution $G_{X}(x)$ and quantile function $G_{X}^{-1}(u)$ of the truncated distribution.

