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Abstract 

There are numerous applications in physics, statistics and electrical circuit simulation where it is required to bound 
entries and the trace of the inverse and the determinant of a large sparse matrix. All these computational tasks are related 
to the central mathematical problem studied in this paper, namely, bounding the bilinear form uXf(A)v for a given matrix 
A and vectors u and v, wheref is  a given smooth function and is defined on the spectrum of A. We will study a practical 
numerical algorithm for bounding the bilinear form, where the matrix A is only referenced through matrix-vector 
multiplications. A Monte Carlo method is also presented to efficiently estimate the trace of the inverse and the 
determinant of a large sparse matrix. 
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1. Introduction 

The central problem studied in this paper is to estimate a lower bound  L and/or  an upper bound  
U, such that 

L <<. u T f ( A )  v <~ U, (1) 

where A is a n × n given real matrix, u and v are given n-vectors, and f is a given smooth function 
and is defined on the spectrum of the matrix A. For  example, if A is an n x n nonsingular matrix, 
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f(2) = 1/2, and u = v = ei, the ith column of the identity matrix I, then uVf(A)v = (A-')u.  The 
problem (1) is to bound the ith diagonal element of the inverse of the matrix A. If we take the sum of 
all diagonal elements of the inverse of the matrix A, then a related problem is to estimate bounds on 
the trace of the inverse of A, tr(A-1). Later, we will see that estimating bounds of the determinant 
det(A) of A is also a related problem. 

When the matrix size n is small, say n ~< 200, we can compute the quantity uTf(A)v explicitly by 
using dense matrix computation methods [8]. In general, such methods may require (~'(n 2) memory 
storage and C(n 3) floating point operations. Therefore, when n is large, it is impractical to compute 
u ~ f(A)~ explicitly. In this paper, we will study numerical methods in which the matrix in question 
is only referenced in the form of matrix-vector products. Because of this feature, the methods are 
well-suited for large sparse matrices or large structured dense matrices for which matrix-vector 
products can be computed cheaply. They will normally take about C(3n + ~:) words of memory 
and C(jv) floating point operations, where x is the required memory for storing the matrix and/or 
forming matrix-vector products, v is the cost of matrix-vector product and j is the number of 
iterations. 

Using variational principles, Robinson and Wathen have studied a special case of the problem 
(1), namely, bounding the entries of the inverse of a matrix [18]. Golub, Meurant and Strakos have 
studied the problem (1) when the matrix A is symmetric positive definite [6, 7]. They closely 
examined the application of their approach for bounding the entries of the inverse of a matrix. 
Quadrature rules, orthogonal polynomial theory and the underlying Lanczos procedure are the 
tools used in their approach. 

In this paper, we will follow the work in [-6, 7] and further develop it in the following aspects. 
First, we will discuss some practical implementation issues of algorithms. Second, we will show 
how to use the proposed algorithms for bounding the quantities (A- 1)i j, tr(A- 1) and det(A), where 
the matrix A is not necessarily symmetric positive definite. Third, we will present a Monte Carlo 
approach for estimating the quantities tr(A-1) and det(A), which significantly reduces the com- 
putational cost and obtain a truly practical method for dealing with large-scale matrices. 

A number of applications of problem (1) have been discussed in [-7], such as estimating the 
accuracy of the CG method for solving large linear systems of equations and solving constraint 
quadratic optimization. New sources of applications are in the fields of fractals [19, 12, 22] and 
lattice Quantum Chromodynamics (QCD) [-10, 20, 2]. In fact, the QCD applications are the main 
motivation of our current studies. It is said that a large fraction of the world's supercomputer time 
is being consumed by physicists in lattice QCD to meet their stringent numerical computation 
demands. Some of their computational kernels are focused on solving large scale matrix computa- 
tion problems, such as computing the trace of the inverse and the determinant of matrices of order 
millions. Numerical analysts have been advised for years that these quantities are too numerically 
sensitive to compute. Computational physicists, with little or no help from numerical analysts, have 
developed numerical techniques to compute these quantities. In this paper, we aim to develop 
practical numerical techniques to tackle these difficult matrix computation problems that have 
eluded us for years. We believe that our approaches are more efficient than those currently being 
used by practitioners. 

The rest of this paper is organized as follows: In Section 2, we review the basic idea of algorithms 
presented in [-6, 7], and discuss a number of practical implementation issues of algorithms. 
Section 3 discusses the applications of the approaches for estimating the bounds of the entries and 
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trace of the inverse of a matrix and the determinant .  A Monte  Carlo approach  and the related 
confidence bounds  are studied in Section 4. Section 5 collects some numerical  results. This paper  is 
concluded with open problems and future work. 

2. Basic algorithm 

In this section, we first review the approach  presented in [-6, 7] for estimating the quant i ty  uTf(A)v 
and then discuss some implementa t ion  issues. We will assume that  the matrix A is symmetric  
positive definite. In the next section, we will show how to use these algori thms to bound  the entries 
of the inverse of a matrix A, tr(A-1) and det(A), where A is not necessarily symmetric  positive 
definite. 

2.1. Main idea 

The main idea of the approaches  proposed  in [-6, 7] is to first t ransform the central problem (1) to 
a Riemann-Stiel t jes  integral problem, and then use quadrature  rules to approximate  the integral, 
which brings the or thogonal  polynomial  theory and the underlying Lanczos procedure into the 
picture. Let us go th rough  the main idea. Since A is symmetric, the eigen-decomposi t ion of A is 
given by A = QTAQ, where Q is an or thogonal  matrix and A is a diagonal  matrix with increasingly 
ordered diagonal  elements 2i. Then 

uTf(A)v = uTQTf(A)Qv = t~Tf(A)t~ = ~ f(2,)(t,~, 
i = 1  

where t~ = (ui) - Qu and f = 07i) - Qv. The last sum can be considered as a Riemann-Stiel t jes  
integral 

I I f ]  = uXf(A)v = f l f ( 2 )  dp(2), 

where the measure p(2) is a piecewise constant  function defined by 

= t 0 

Z !  = 1 ~tjVj 

L Y j= 1 ajv) 

if 2 < a = 2 1 ,  

if 2 i ~< 2 < ,~i+1, 

if b = 2, ~< 2. 

A way to obtain an estimate for the Riemann-Stiel t jes  integral is to use Gauss-type quadrature  
rules [-3, 1]. The general quadra ture  formula is of the form 

N M 
I [ f ]  = ~ (ojf(Oj) + ~" Vkf(Zk), (2) 

j = l  k = l  
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where the weights {Oj> and { vk) and the nodes { Qj} are unknown and to be determined. The nodes 
{Q) are prescribed. The integration error (remainder) is 

WI = 
s 
b.f@) d/G) - Kfl. 
a 

If A4 = 0, then it is the well-known Gauss rule. If A4 = 1 and z1 = a or z1 = b, it is the 
Gauss-Radau rule. If A4 = 2 and 21 = a and z2 = b, it is the Gauss-Lobatto rule. The sign of R [f] 
determines whether the quadrature formula I [f] is a lower bound (if R [f] > 0) or an upper lower 
bound (if R[f] < 0) of the quantity uTf(A)u. 

We will focus on the case u = u in the following discussion. In this case, the measure p(A) is 
a positive increasing piecewise constant function. We note that the case u # u can be reduced to the 
case u = u by the polarization expression 

UTf(& = $(YTf(4Y - z’f(A)z), (3) 

wherey=rc+uandz=u-u. 

2.2. Basic algorithm 

Let us briefly recall how the weights and the nodes in the quadrature formula are obtained. First, 
we know that a sequence of polynomials {pi(A)}g, can be defined such that they are orthonormal 
with respect to p(A), i.e., 

s b 

pi(A dp(A) = ’ if ’ =” 
a 0 if i #j, 

where it is assumed that Jdp = 1. The sequence of orthonormal polynomials satisfies a three-term 
recurrence 

YjPjtA) =(A - aj)Pj-l(a) -Yj-lPj-2(Ah (4) 

forj = 1,2, . . . with p-i(A) z 0 and p,(A) = 1. Writing the recurrence in matrix form, we have 

and 

Tj = 

a1 Yl 

Yl a2 Y2 

Y2 a3 *.. 

*.* .* 

. Yj-1 

"t-1 aj 

Then in the Gauss quadrature rule, the eigenvalues of Tj (which are the zeros Of pi(A)) are the nodes 
8j. The weights Oj are the squares of the first elements of the normalized (i.e., unit norm) 
eigenvectors of Tj [l]. 



Z. Bai et al./Journal of  Computational and Applied Mathematics 74 (1996) 71-89 75 

In the G a u s s - R a d a u  and G a u s s - L o b a t t o  rules, the nodes {02}, {Zk} and weights {coj}, {v j} come 
from eigenvalues and the squares of the first elements of the normalized eigenvectors of an adjusted 
tr idiagonal matr ix of Tj,, which has the prescribed eigenvalues a and/or  b, i.e., a and/or  b are roots 
of the polynomial  pj+ ~ (2) [6]. 

To this end, we recall that  the classical Lanczos procedure is an elegant way to compute  the 
o r thonormal  polynomials  p2(2) [14, 6]. We have the following algori thm in summary  form. 

Algorithm 1. Suppose A e ~"×" is symmetric  positive definite and 2(A) ~ [a ,b] ,  u ~ ~ "  and f is 
a smooth  function in the interval [a, b]. Then the following algori thm computes  a lower bound  
L and /or  an upper  bound  U of the quant i ty  u T f ( A ) u  by using the Gauss, G a u s s - R a d a u  or 
G a u s s - L o b a t t o  rules. 
• Let x0 = u~ II u II 2, and x_ 1 = 0 and 70 = 0 
• For  j = 1, 2, . . . ,  until convergence 

1. O~j = x T - 1 A x j - 1  

2. rj = A x j _ ~  - o~jxj_~ - y j - ~ x j - 2  

3. ~j = [Irjll2 
4. For  G a u s s - R a d a u  or G a u s s - L o b a t t o  rules, adjust Tj to have the prescribed eigenvalue (s) 

a and/or  b, denote  the resulting matrix 2~j, (see Remark  3 below) 
5. C ompu te  eigenvalues Ok and the first elements Ok of the eigenvectors of Tj, 
6. C ompu te  Ij = E~'= 1 o2f(Ok) 
7. If using the G a u s s - R a d a u  rule, repeat steps 5-7 once 
8. Check for convergence (see Remark  4 below), cont inue if necessary 
9. x~ = rj /Tj  

• End 
• L = Ilu1122I~ and/or  U = IlullzzI~ 
The following remarks are in order: 

Remark  1. For  the G a u s s - R a d a u  and G a u s s - L o b a t t o  rules, we need to find an interval [a, b] such 
that  2(A) c I-a, b]. A simple way to find a and b is to use Gerschgorin circles. If the lower bound  
computed  by the Gerschgorin circles is less than or equal to 0, we simply set a to be a small number  
(say 10-4). 

Other  sophisticated algori thms exist for estimating a and b. For  example, we can use the Lanczos 
me thod  for est imating the extreme eigenvalues [8]. 

Remark  2. On  the return of the algori thm, for the Gauss rule, from the expression of R [ f ] ,  we 
know that  if f~2,)(¢) > 0 for any n and 4, a < ~ < b, then Ij is a lower bound  L. 

For  the G a u s s - R a d a u  rule, if f~2,+1)(~) < 0 for any n and 4, a < ~ < b, then Ij (with b as 
a prescribed eigenvalue of Tj,) is a lower bound  L, and Ij (with a as a prescribed eigenvalue of T~,) is 
an upper  bound  U. 

For  the G a u s s - L o b a t t o  rule, if f~2,j(~) > 0 for any n and 4, a < ~ < b, then Ij is an upper  bound  
U. 

Remark 3. If the Gauss rule is used, no adjus tment  of the tr idiagonal matrix Tj is necessary, i.e., 
•, = Tj. 
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If the Gauss -Radau  rule is used, steps 5-7 are executed twice. We need to construct the 
polynomial pj+ 1(2) such that pj+l(a)  = 0 and pj+ 1 (b) = 0, respectively, i.e., we need to extend the 
matrix Tj to 

~j  e~ 

where the parameter  t k is chosen such that a and b is an eigenvalue of Tj,, respectively. F rom [4, 6], 
we know that ~ = a + 6j and ~ = b + 6j, respectively, where 6j is the last component  of the 
solution 5 of the tridiagonal system 

(Tj a I )6  2 (Tj  b I )5  7~ej. - -  = 7j ej o r  - -  -~ 

If the Gauss -Loba t to  rule is used, we need to construct pj+ 1(2) such that pj+ l(a) = pj+ l(b) = 0, 
i.e., Tj is updated to 

1 
where the parameters ~b and ~ are chosen so that a and b are eigenvalues of Tj,. Again, from [4, 6], 
we know that 

(9 - 6jb - p ja  and 11/2 __ b - a 
6j - pj 6j - ~j '  

where 6j and pj are the last components  of the solutions 5 and p of the tridiagonal systems 

(Tj  - a I )~  = ej and (Tj  - bI)la = ej. 

Remark 4. As for any iterative method, we first should have a parameter  maxi t  to limit the 
maximum number  of the iterations (i.e., j < maxit) .  The following stopping criterion may be 
used: 

IIj - I j -a [  ~ e[Ij[, 

where e is a user specified tolerance value. This criterion tells that for the approximation I j  to the 
lower bound L or the upper bound U, we have 

I Z - - I j l < < . l L - I j - l l + e l l j l  or I U - I j I ~ < I U - I j - I I + e I I j [ .  

Therefore, the iteration stops if the error is no longer decreasing or decreasing too slowly. 

Remark 5. The combination of the steps 1-4 and 10 is a step of the standard symmetric Lanczos 
procedure. Note that the matrix A in question is only referenced here in the form of the 
matr ix-vector  product. The Lanczos procedure can be implemented with only 3n-vectors in the 
fast memory  [8]. This is the major storage requirement for the algorithm and is an attractive 
feature for large-scale problems. 
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Remark  6. As pointed out  in [6, 7], we need not  always explicitly compute  the eigenvalues and 
eigenvectors of the tr idiagonal matrix Tj,. It can be shown that  

j '  

a~2 f (Ok)  = e l f ( T j , ) e l .  (5) 
k = l  

Therefore, in the case where the (1, 1) entry of f (Tj , )  can easily be computed,  the computa t ion  of the 
eigenvalues and eigenvectors of Tj, is not necessary (see Section 3). 

3. Bounds on the quantities (A-1)ij, tr(A-1) and det (A) 

In this section, we show how to use Algori thm 1 (presented in Section 2) by bounding  the 
quantit ies (A- 1)~j, t r (A-  1) and det(A). We first discuss the case where the matrix A is symmetric 
positive definite and then extend to the case where the matrix A is not  symmetric positive definite. 

3.1. Matr ix  A is symmetr ic  pos i t ive  definite 

3.1.1. Bounds  on ( A - 1 ) u  
To bound  a diagonal  element of the inverse of A, (A- 1)u, for a given i, 1 ~< i ~< n, we let u = v = e~ 

and f (2 )  = 1/2, 0 < a < 2 < b, then u T f ( A ) u  = (A-X)i i  . Note  that  f~2"+1)(2) = - (2n + 1)! 
2-(2, + 2) and f~2")(2) = (2n)!2-12, + 1). By Algori thm 1 with the Gauss rule, at convergence, Ij  gives 
a lower bound  L of (A- 1),. With the G a u s s - R a d a u  rule, we obtain both  lower bound  L and upper  
bound  U of the diagonal  entry (A- 1)u. The G a u s s - L o b a t t o  rule will give an upper  bound  U of 
( a - 1 ) i i  . 

In this case, we can avoid comput ing  the eigenvalues and eigenvectors of the tr idiagonal matrix 
Tj, explicitly. F r o m  Eq. (5), we only need to compute  the (1, 1) element of (Tj,)- 1, which can be 
computed  recursively. The formulat ion detail has been worked out  in [-6]. 

3.1.2. B o u n d s  on (A-1) i i  
I f u  = ei and r = ej and f (2 )  = 1/2, 0 < a < 2 < b, then u V f ( A ) v  = (A -1 ) i j .  Using (3), we have 

(A - 1)i.j = a(yT A - Xy __ zTA - lZ) ' 

where y = ei + ej and z = e ~ -  ej. Thus, the bounds  for off-diagonal entry (A-1)~ can also be 
obtained by using Algori thm 1. 

3.1.3. Bounds  on tr(A -1 )  
We know from above that  a lower bound  Li and/or  upper  bound  Ui can be est imated for each 

diagonal  element ( A -  1)u, i = 1, 2, . . . ,  n. Thus, a lower bound  of t r (A-  1) is given by ~ ' =  1 Li and an 
upper  bound  is given by y'~'= 1 U/. However,  this would require executing Algori thm 1 n times. 
Al though it only takes about  (9(jr)  flops (the main cost is for the mat r ix-vec tor  product)  to run 
Algori thm 1 once, if we run the a lgori thm n times, it will cost (9(njv) flops. It ends up with the same 
computa t iona l  complexity as the dense matrix computa t ion  methods  which is unacceptable in 
practice. In the next section, we will propose a Monte  Carlo approach  to estimate t r(A-1) which 
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only requires executing Algori thm 1 m times, where m is significantly smaller than n, say m = 30 to 
50. It results in a significant saving in terms of computa t ional  costs. 

3.1.4. Bounds on det(A) 
It can easily be verified by using the eigen-decomposi t ion that  for a symmetric  positive-definite 

matrix A: 

ln(det(A)) = tr(ln(A)), (6) 

i . e . ,  

det(A) = exp (tr(ln(A))). (7) 

Therefore, if we let f (2 )  = In 2, then the problem of estimating det (A) is reduced to bound  the trace 
of the matrix natural  logar i thm function ln(A), i.e., ~ ' = l ( l n ( A ) ) , .  Note  that  
f ( 2 n +  1)(/~) = (2n)!)~-(zn+ 1) > 0 and f ( 2 n ) ( ) ~ )  = _ (2n - 1)!• -(2n) < 0 for any n and 0 < a < 2 < b, 
then we know that  by applying Algori thm 1 with the Gauss rule, at convergence, Ij gives an upper  
bound  Ui of(ln(A))ii. A lower bound  Li and an upper  bound  Ui of(ln(A))u can be obtained by using 
Algori thm 1 with the G a u s s - R a d a u  rule. A lower bound  of Ui can be obtained by using 
Algori thm 1 with the G a u s s - L o b a t t o  rule. 

However, if we try to bound  each (ln(A))u for 1 ~< i ~< n, it requires running Algori thm 1 n times 
and could be too costly to use in practice. The Monte  Carlo approach  to be discussed in Section 4 
will relieve this computa t ional  burden  in practice. 

3.2. Matrix A is not symmetric positive definite 

In some applications, such as in lattice QCD,  the matrix A involved may  not  be symmetric  
positive definite. It may  not  even be symmetric. In this section, we show how we can use the 
techniques developed in Section 2 to bound  (A- 1)ij, tr(A - 1), and det(A), where A is nonsymmetr ic  
positive definite. The main observat ion of such a t ransformat ion is rather simple. Note  that  if A is 
nonsingular,  then ArA is symmetric positive definite, and furthermore,  from (ATA) - 1ATA = I, we 
have 

A -  1 = (ATA) - XAT" (8) 

Of course, in practice, we will never form the matrix ATA explicitly. The mat r ix-vec tor  product  
ATAx is computed  in two mat r ix-vec tor  products.  An alternative approach  is to apply Lanczos 
procedure to bidiagonalize A [8]. 

3.2.1. Bounds on (A-1)ij 
F r o m  (8), we have 

eTA-  lei = e~(ATA)- 1ATei = eT(ATA) - IV, 

where v = ATej. Therefore, by expression (3), Algori thm 1 can be used to estimate the bounds  on 
any entries of the inverse of the matrix A with f (2 )  = 1/2, and  u = ei and v = ATej. 
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3.2.2. Bounds on t r ( A -  1) 
In order to bound tr(A-1), observe that 

1 tr(A- ~ + A-T)  _ 1  tr((AVA)-1AT + A ( A T A ) - 1 )  tr(A- 1) = ~ 

and 

79 

e~((ATA) - 1AT + A(ATA)  - 1)e i = eT(ATA)-1AXel + eTA(ATA) - le i 

= eT(ATA) - iV + vT(ATA) - le i 

= 2eT(ATA) - iV, 

where r = ATei . From these relations, we see that Algorithm 1 can be used to estimate 
bounds on e T ( A T A ) - l r  with expression (3). Furthermore, since ( A T A ) - I A T +  A(ATA)  -1 is 
symmetric, we can apply Monte Carlo approach in Section 4, which requires the matrix to be 
symmetric. 

3.2.3. Bounds on det (A)  
Let Eq. (6) apply to the matrix ATA where we assume A is nonsingular, then we have 

det(ATA) = exp (tr(ln(ATA))). 

On the other hand, by the property of determinant, we have 

det(ATA) = det (A T) det(A) = (det (A))2. 

Therefore, let f(2) = In 2, we can estimate t r ( f (ATA) )  using the approach described in Section 3, 
and then 

det(A) = _+ x/exp (tr(ln(ATA))). 

The drawback with this approach is that the sign of the determinant is lost. But in the QCD 
application, we know the sign of the determinant in advance from the physical properties of the 
matrix involved [-16, 20-1. 

4. Monte Carlo approach and confidence interval 

In this section, we will develop a Monte Carlo approach for bounding the quantity tr(f(A)). 
Instead of applying Algorithms 1 n times for each diagonal element f(A)~i, the Monte Carlo 
approach only applies Algorithm 1 m times to obtain an unbiased estimator of tr(f(A)), where 
m ,~ n. The saving in computational costs is significant. Probabilistic confidence bounds for the 
unbiased estimator are also presented in this section. 

4.1. Theory 

The Monte Carlo approach is based on the following proposition [11, 2]. 
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Proposition 4.1. Let H be an n x n symmetric matrix with t r(H) # 0. Let V be the discrete random 
variable which takes the values 1 and - 1  each with probability 0.5 and let z be a vector oJ 
n independent samples from V. Then zXHz is an unbiased estimator of tr(H), i.e., 

E(z~Hz) = tr(H), 

and 
var(zXHz) = 2 ~ h 2. 

i~ j  

As shown in Section 3, the problems of estimating the bounds  of t r (A-  1) and det(A) are reduced 
to bounding the trace of a symmetric matrix H, which is a function of A. Specifically, when A is 
symmetric positive definite, H = A-1  or H = In A. When A is not symmetric positive definite, 
H = A-1 + A-T and H = ln(AaA). Therefore, we can use Proposi t ion 4.1 to obtain an unbiased 
estimator of tr(H). 

In practice, we take m sample vectors zi as described in Proposi t ion 4.1, and then use Algo- 
rithm 1 (see Section 2) to obtain a lower bound L~ and an upper bound  Ui of the quanti ty zTHz,  

Li <~ z~ H;gi <~ Ui, (9) 

and furthermore, we have E(z~Hzg) = tr(H), for i = 1, 2 . . . . .  m. By taking the mean of the m com- 
puted lower and upper bounds Li and Ui, we have 

1 ~ Li< 1 ~z.~Hzi<I ~, Ui. (10) 
mi= 1 mi= 1 mi= 1 

It is natural to expect that with a suitable sample size m, the mean of the computed bounds  yields 
a good estimation of the quanti ty tr(H). 

To quantitatively assess the quality of such estimation, we now turn to the question of confidence 
bounds  of the estimation. In other words, we want to find an interval so that the exact value of 
tr(H) is in such interval with probabil i ty p, where 0 < p < 1. There is a Hoeffding's exponential 
inequality in probabili ty theory which can be used to derive such confidence bounds  [17]. 

Proposition 4.2 (Hoeffding's inequality). Let wl, w2, . . . ,  Wm be independent random variables with 
zero means and bounded ranges ai <~ wi <<. hi. Then for each q > O, 

P ( w x + w 2 +  "" +Wm>~rl)<.exp(,~m ---2q2 ) 
\ 2 . . , i : 1  (bT---a,) 2 ' 

and 

(wm ~ 2r/2 ) 
P(Iwx + W2 "+- "'" "}- Wml ) q) ~ 2 exp \2.,i= 1 ( b 7 7 a l ) 2  . 

To apply Hoeffding's inequality, we let wl = zTHzi -- tr(H). Since z~ are taken as independent 
random vectors, wi are independent random variables. F rom Proposi t ion 4.1, w~ has zero means 
(i.e. E(wi) = 0). Furthermore,  from (9), we also know that w~ has bounded ranges 

Lmi n -- t r (H) ~< wi <<. Umax -- t r(H) 

for all i, 1 ~< i ~< m, where Umax = max{Ui} and Lmin = min{L~}. 
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Hence, by Hoeffding's inequality, we have the following probabilistic bounds  for the mean of 
m samples z~Hzi, 

P ( I  1 "m~=lz~Hz~- t r (H)  / > ~ ) ~ < 2 e x p ( - ~ ) ,  (11) 

where d = m ( U m a x  - -  L m i n )  2 and q > 0 is a tolerance value, which is related to the probabili ty on the 
r ight-hand side of the inequality. In other words, inequality (11) tells us that  

P zTHz i _ r/ < tr(H) < - -  7.THzi + > 1 -- 2 exp - -  . 
i = l  m m i = 1  

Then from the bounds  (10), we have 

P Li - q-- < tr(H) < Ui + > 1 -- 2 exp . (12) 
i=l m -~ i= 

Therefore, we conclude that  the trace of H is in the interval 

i = 1  m m i = 1  

with probabili ty 1 - 2 e x p ( -  2q2/d). 
If we specify the probabili ty p in (12), i.e. p = 1 - 2 e x p ( -  2qE/d), then solving this equality for 

rl/m, yields 

~--- = ~/--  ~m (Umax - Lrnin)2 In ( ~ - ~ )  " m (13) 

Since (Umax - L m i n )  2 is bounded  by 2n 2 II H [I 2, we see that  with a fixed value of p, film ~ 0 as m ~ ~ ,  
i.e., the confidence interval is essentially given by the means of the computed  bounds.  

4.2. Algorithm 

We now present a Monte  Carlo a lgori thm which computes  an unbiased est imator of t r ( f (A))  
where A is symmetric positive definite. The algori thm will also return a confidence interval with 
user specified probability. Algori thms for the nonsymmetr ic  positive-definite case can be developed 
in a similar f ramework using the strategies discussed in Section 3. 

First, we note  that, heuristically, the means of Li and Ui are very sharp bounds  of z~Azi, which is 
an unbiased est imator  of tr(H). It would be ideal if we could have a sharp confidence interval, i.e., 
rl/m is small. However,  from Eq. (13), we may  have to choose quite a large number  of samples m. It 
would  be too expensive to run such a large number  of samples. Instead, we suggest to choose a fixed 
number  of samples m and the probabili ty p to compute  the corresponding confidence interval. Here 
is the a lgori thm based on the Monte  Carlo approach.  

Algorithm 2. Suppose A ~ ~" ×" is symmetric  positive definite and 2(A) c [a, b]. Let m be a chosen 
number  of samples. Then the following algori thm computes  (a) an unbiased est imator  Ip of the 
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quantity tr(f(A)),  and (b) a confidence interval (Lp, Up) such that t r ( f (A))  ~ (Lp, Up) with a user 
specified probability p, where 0 < p < 1. 

1. F o r j  = 1,2, ... ,m 
1. Generate n-vector zj whose elements are uniformly distributed in the interval (0, 1). 
2. For  i = l :n,  if zj(i) < 0.5, then zj(i) = - 1, otherwise, zj(i) = 1. 
3. Apply Algorithm 1 with Gauss -Radau  rule to obtain a lower bound Lj and an upper 

bound Uj of the quantity z T f ( A ) z j  
1 j (Li + Ui) 4. I ( j )  = 73 Y~i = 1 

5. Lmi~ = min{Lmln, Lj}  
6. Urea, -- max{Urea,, Uj} 
7. r/z = - 0.5j(Um~x - Lmin)2(ln(1 -- p)/2) 

1 j Li ~1 8. Lp(j)  = 7 Ei= l - j 
1 j 

9. Up(j) =Ty . ,=  1 U i + j  
2. End 
3. lp = I(m) 
4. Lp = Lp(m) 
5. Up = Lp(m) 

5. Numerical examples 

All algorithms are implemented in Matlab 4.2 with sparse matrix computat ion functions• The 
tolerance value e for the stopping criterion of Algorithm 1 is set to be 10 -4. The bounds a and b for 
eigenvalues of A are estimated by the Gerschgorin circle theorem. It is observed that the 
convergence behavior of the algorithm is less sensitive to the values a and b. The poor estimation of 
a and b usually only adds a few more iterations. The so-called "exact" values reported in this 
section are the quantities computed by using full dense or direct sparse matrix computat ion 
methods. For  example, the trace of the inverse of a matrix is computed by first computing the 
inverse explicitly and then compute the trace. All numerical experiments are carried out on an SUN 
Sparc 10 workstations with IEEE double precision floating point operations• 

5.1. Bounds on (A - 1)ii and (A - 1)ij 

Example 1 (Linear heat f low matrix). This test matrix is from [15]. The matrix is from the 
discretization of the linear heat flow problem using the simplest implicit finite difference method. 
The coefficient matrix A of the resulted linear system of equations is a k 2 × k 2 block tridiagonal 
matrix 

A = 

D C 

C D C 

C D 
° ° .  

• • ° C 

C D 



Z. Bai et al./Journal of Computational and Applied Mathematics 74 (1996) 71-89 

Table  1 

83 

Linear  heat  flow matrix,  n = 900 

(A- 1). 
i "Exact"  value 

G a u s s - R a d a u  
I ter  Lower  b o u n d  Li U p p e r  b o u n d  Ui U~ - Li 

1 5 .7020150e- -01  4 
22 5 .7792259e- -01  4 
32 5 .8626306e- -01  4 

5.7020115e -- 01 5.7020202e -- 01 8.68e -- 7 
5 .7792195e- -01  5 .7792349e- -01  1 .54e - -6  
5 .8626209e- -01  5 .8626430e- -01  2 . 2 1 e - - 6  

where D is a k x k tridiagonal matrix 

D = 

1 + 4 v  - - v  

- - v  1 + 4 v  v ) 
1 + 4 v  ". 

• . " . - -  V 

- - v  1 + 4 v  

and C = d i a g ( -  v, - v, . . . ,  - v), v = At/h 2, At is timestep, h is spacing interval• It can be shown 
that A is symmetric positive definite for v > 0. 

Table 1 shows the computed bounds  for some diagonal elements of the matrix A with n = 900 
by Algorithm 1. In fact, the diagonal elements of the inverse of A only have three different 
values corresponding to the 3, 4 or 5 nonzeros in the rows of the original matrix. In 
[18-1, formulations for the bounds  of three different values of the diagonal elements of the inverse 
of A are given. Using their formulas, we have the bounds  for the three representative values of 
the diagonal elements of the inverse of A, where v = 0.2 and cond(A) = 2.5853• 

5.676320033658228e - 01 < (A-1)l,1 < 5.750190403655749e - 01 

5.730060434231142e - 01 < (A-1)22,22 < 5.866283249460820e - 01 

5 .786555786555786e-01  < ( A - 1 ) 3 2 , 3 2  < 5.974842767295597e-01 

It clearly shows that the bounds  Li and Ui are much sharper bounds. In addition, Algorithm 1 is 
a very efficient algorithm, it only takes 4 iterations to obtain convergent bounds. 

For  bounding the off-diagonal elements, we use formula (3) and Algorithm 1. Table 2 shows the 
computed bounds.  

Example 2 (Vicsek fractal Hamiltonian (VFH) matrix). This test matrix is from the transverse 
vibration o f a  Vicsek fractal [13, 19, 12]. The fractal is self-similarly constructed• The first generator 
of the Vicsek gasket matrix H composed of five atoms with its four outermost  atoms anchored to 
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Linear  heat  flow matrix,  n = 900 

(A - 1)ij G a u s s - R a d a u  
i j "Exact"  value I ter  Lower  b o u n d  Li Upper  bound  Ui U i - L i 

2 1 6.5906786e - 02 4 6 . 5 9 0 6 4 3 6 e - 0 2  6 . 5 9 0 7 1 7 1 e - 0 2  7.35e - 07 
20 21 6 . 6 8 3 7 0 6 1 e - 0 2  4 6 . 6 8 3 6 5 0 7 e - 0 2  6 . 6 8 3 7 5 8 4 e - 0 2  1 . 0 7 e - 0 6  

200 181 1 . 6 3 2 8 0 1 1 e - 1 7  4 - 1 . 4 3 5 9 5 0 0 e - 0 6  1 . 4 3 5 9 5 0 0 e - 0 6  2 . 8 7 e - 0 6  
200 700 3 . 9 5 0 9 0 2 9 e - 1 9  4 - 1 . 7 2 7 6 3 3 2 e - 0 6  1 . 7 2 7 6 3 3 2 e - 0 6  3 . 4 5 e - 0 6  
899 895 1 . 1 1 8 9 5 7 2 e - 0 4  4 1 . 1 1 0 6 3 3 5 e - 0 4  1 . 1 2 7 3 0 1 0 e - 0 4  1 . 6 6 e - 0 6  

a rigid b o u n d a r y  site, i.e., the first stage uses a toms  as its cell Hx,  the kth stage H k u s e s  (k - 1)th 
fractal as its cell: 

- H k _ l  Vk(1)l V(2)r I[(3)T V(4)1 1 - k - 1  V k - ~  - 

V(k 1-) 1 Hk - 1 0 0 0 

Hk -= Vtk 2-) 1 0 S k  - 1 0 0 , 

V(k 3-) 1 0 0 Hk - 1 0 

- V(k 4-) 1 0 0 0 Hk - 1 

with 

- 4  1 1 1 1 ]  

1 - 2  0 0 0 

H1 = 1 0 - 2 0 0 . 

1 0 0 - 2  0 

1 0 0 0 - 2  

The order  n k of the matr ix  Hk is n k = 5n k_ 1- Vk q-) 1 are the interact ion matr ices  linking one 
genera t ion  to the next generat ion.  Let Pl, 1 = 3, P2,1 = 2, P3,1 ~-" 5 ,  P4, 1 = 4 and  

P l , k - 1  = 5 k - 2 ( p l , 1  - -  1) + P l , k - 2 ,  P2,k-1 = 5 k - 2 ( p 2 , 1  - -  1) + P2,k -2 ,  

P3,k-1 = 5 k - 2 ( p 3 , 1  - -  1) + P 3 , k - 2 ,  P4, k -1  = 5 k - 2 ( p 4 , 1  - -  1) + P4,k -2 ,  

for k = 3, 4, . . . .  Then  Vk~k) l is a zero matr ix  except  with one at (p 1, k- 1, P2, k- 1 ) entry, Vk~2_ ) 1 is a zero 
matr ix  except with one at (P2.k-l ,Pl,k-1) entry, Vkta2a is a zero matr ix  except  with one at 
(P3,k- 1 , P 4 . k -  1) entry  and  Vk(4-) 1 is a zero matr ix  except  with one at (Pg.k- 1 ,P3,k- 1) entry. It is easy 
to see that  H k is symmetr ic  posi t ive definite. 

One  of  the interesting compu ta t iona l  p rob lems  related to Hk is to find some diagonal  elements 
(and trace) of  the inverse of  the matr ix  H k. Tables  3 and  4 show the es t imated b o u n d s  for some 
diagonal  elements  of  the matr ix  with d imens ion  n -- 625 and n = 3125. Again, we ob ta ined  sharp  
b o u n d s  in only 13 to 20 i terations.  
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Table 3 

Vicsek fractal Hamiltonian matrix, n = 625 

(A 1)i~ Gauss Radau 
i Iter Lower bound L~ Upper bound Ui Ui - Li 

1 13 9 . 4 8 0 0 2 6 e - 0 1  

100 15 1.100520e + 00 

301 11 9 .242992e - 01 

625 13 6 .440017e - 01 

Vicsek ffactalHamiltonianmatrix, n = 3125 

1 19 9 .4801416e - 01 

100 20 1.1005253e + 00 

2000 19 1.1003685e + 00 

3125 16 6 .4400234e - 01 

9 .480197e - 01 1 . 7 1 e - 0 5  

1.100527e + 00 7.00e - 06 

9 . 2 4 3 1 8 4 e - 0 1  2 . 6 2 e - 0 5  

6 . 4 4 0 0 5 4 e - 0 1  3.70e - 06 

9 . 4 8 0 1 7 7 6 e - 0 1  3 . 6 0 e - 0 6  

1.1005302e + 00 4.90e - 06 

1 . 1 0 0 3 7 8 6 e + 0 0  1 . 0 1 e - 0 5  

6 . 4 4 0 1 1 0 0 e - 0 1  8 . 6 6 e - 0 6  

Table 4 

Poisson matrix, n = 900, c o n d ( A )  = 564.92 

( A -  1)i. Gauss-Radau J 

i j Iter Lower bound Li Upper bound Ui Ui - Li 

2 1 16,37;11,29 1 . 0 4 5 6 4 4 0 e - 0 1  1 . 0 4 8 4 1 7 2 e - 0 1  2 . 7 7 3 2 e - 0 4  

1 900 13,30;13,32 - 5 .7004377e - 05 1.5611762e --  04 2.1312e --  04 

10 90 26,50;22,46 1 . 5 1 3 5 6 9 8 e - 0 4  4 . 4 2 1 1 3 6 9 e - 0 4  2 . 9 0 7 6 e - - 0 4  

41 42 36,54;13,31 2 . 2 9 3 8 4 2 7 e - - 0 1  2 .2965834e - 01 2.7407e - 04 

58 59 24,50;14,35 1 . 9 1 9 0 9 4 8 e - 0 1  1 . 9 2 2 6 9 9 7 e - 0 1  3 . 6 0 5 0 e - 0 4  

450 449 35,51;26,49 1 . 7 9 0 1 3 8 7 e - 0 1  1 . 7 9 2 6 6 5 7 e - - 0 1  2 . 5 2 6 9 e - - 0 4  

550 750 38,53;39,54 3 . 9 8 8 6 9 8 1 e - 0 3  4 . 1 8 1 0 6 0 5 e - - 0 3  1 . 9 2 3 6 e - - 0 4  

600 602 33,52;24,52 8 . 2 6 7 3 7 6 1 e - - 0 4  1 . 0 9 1 7 4 1 3 e - 0 3  2 . 6 5 0 0 e - 0 4  

650 750 40,54;39,53 1 . 6 3 0 1 9 1 4 e - 0 2  1 . 6 4 7 9 7 7 7 e - - 0 2  1 . 7 7 8 6 e - - 0 4  

Example 3 (Poisson matrix). In this example, the matrix of order k 2 is a block tridiagonal matrix 
from the 5-point central difference discretization of the 2-D Poisson's equation on a k x k square 
mesh. Table 4 shows the results for bounding some off-diagonal elements of the matrix using 
expression (3) and Algorithm 1 with the Gauss-Radau rule. 

Note that in the column "iter" there are four numbers in each row. The first two represent the 
number of iterations in the Gauss-Radau rule for the lower and upper bounds o f y T f ( A ) y ,  where 
y = ei + ej. The last two are the number of iterations for the lower and upper bounds of zTf(A)z,  
where z = ei - ej. 

5.2. Bounds on t r (A-  1) and det(A) 

We now present numerical examples of Algorithm 2 for the Monte Carlo estimation of the 
quantities tr(A-1) and det(A). Tables 5 and 6 are the summary of the results for different test 
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Table 5 Summary of the Monte Carlo approach for estimating t r (A-  ~) 

Matrix n "Exact" Iter Estimated Rel. err Confidence bounds 

Poisson 900 5.126e + 02 30 - 50 5.020e + 02 2.0% 
VFH 625 5.383e + 02 12 - 21 5.366e + 02 0.3% 
Wathen 481 2.681e + 01 33 - 58 2.667e + 01 0.5% 
Lehmer 200 2.000e + 04 38 - 70 2.017e + 04 0.8% 

(4.28e + 02, 5.75e + 02) 
(5.05e + 02, 5.67e + 02) 
(2.58e + 01, 2.75e + 01) 
(1.86e + 04,2.16e + 04) 

(a) Poisson matrix (n = 900 
7 5 0  

600 t ' - ' ~  - ~ _ , _  ~ 

¢~550 i 

45O 

I r  " ' ~  - -  

3 5 0  

I I 

Numbm of Samples 

~ 5 0 1  

(b) VFH matrix (n = 625) 

°I 
, , , ~ ' , , , , 

4501 5 10 15 25 30 35 40 45 50 
Nuenlo~r of Samples 

(c) 
30 

29 

28 

27 

2 5  

24  

2 3  

2 2  

Wathen matrix (n = 481) 

10 1'5 20 2'5 30 35 40 4'5 50 
NurnbQrofSam~es 

(d) Lehmer matrix (n - 200) 
x 10 4 

2.4 . . . . . .  

2,2 i ~ i - . - .  

2.1 I "  

j ' * ~  j ~ .  .~_~-~,..+..~, ~ , . ~  

f 
1.8 

1.7 

1 .6  

Number of Sampl~ 

Fig. 1. Numerical results of the Monte Carlo approach (Algorithm 2) for estimating tr(A- z). The solid horizontal line is 
the exact value oftr(A-  z). The solid line with + is the estimated value. The dash-dot lines are the confidence intervals of 
the estimated values with probability 0.95. 
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Table 6 Summary of the Monte  Carlo approach for estimating tr(ln A) 
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Matrix n "Exact" Iter Estimated Re1. err Confidence bounds 

Poisson 900 1.065e + 03 11 - 29 1.060e + 03 0.4% 
V F H  625 3.677e + 02 10 - 14 3.661e + 02 0.4% 
H flow 900 5.643e + 01 4 5.669e + 01 0.4% 
Pei 300 5.707e + 00 2 - 3 5.240e + 00 8.2% 

(1.03e + 03, 1.08e + 03) 
(3.38e + 02, 3.94e + 02) 
(5.42e + t,., 5.92e + 01) 
( -- 1.83e + 0, 1.23e + 1) 

(e) Poisson matrix (n = 900) 
1200 

11oo 

~ 1050 

1000 

950 

s 
~r  

5 10 15 20 25 30 35 40 45 50 
Number ol Samples 

(f) VFH matrix (n = 625) 
460, 

h 
440 t 

/ 

420 J ~. 

340 i ¢ _ - ...... - - -  - "~ - _ _ . 

320 i , . 
i 

! / 
300 }~ 

t 
i i i r 280; 5 10 15 210 25 310 35 4; 415 50 

Number o1 Samples 

(g) Linear Heat Flow matrix (n = 900' 

.=* 

6o 
"6 

55 

5 0  

- - -  - s  . . . . .  - , -  

1/ 

5 10 15 20 25 30 35 40 45 50 
Number ol Samples 

(h) Pei matrix (n = 300) 

0 

-5 

- IG 

1 A 
201 ~,  

+ \ Z  ....... 

Number of Samples 

I I [ 

35 40 45 50 

Fig. 2. Numerical  results of the Monte  Carlo approach (Algorithm 2) for estimating tr(ln(A)). The solid horizontal line is 
the exact value of tr(ln(A)). The solid line with + is the estimated value. The dash-dot lines are the confidence intervals 
of the estimated values with probability 0.95. Note  that det(A) = exp(tr(ln(A))). 
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matrices. Figs. 1 and 2 show the history of the Monte  Carlo approach where the number of sample 
vectors zf is m = 50. Linear heat fl0w, VFH and Poisson test matrices have been described above. 
The additional three test matrices are from the Higham's test matrix collection [9]: 

Wathen matrix: It is a consistent mass matrix for a regular nx x ny grid of 8-node (serendipity) 
elements in 2 space dimensions. The order of the matrix is n = 3nxny + 2nx + 2ny + 1. In our 
numerical run, we let nx = ny = 12, then n = 481 and cond(A) = 829.19. 

Lehmer matrix: It is an n x n symmetric positive-definite matrix with entries afj = i/j for j />  i. 
The inverse of A is tridiagonal, and explicit formulas are known for its entries, n ~< cond(A) ~< 4n 2. 
We tested the matrix with n = 200 and cond(A) = 4.8401e + 04. 

Pei matrix: A = ~I + 11 a, where 1 is an n-vector with all ones. The matrix is singular for ~ = 0, 
- n. We tested the matrix with n = 300, ~ = 1 and cond(A) = 301. 

6. Conclusions and future work 

An elegant approach for estimating the bounds of the quantity uTf(A)v  has been laid out earlier 
in [6, 7]. The theory of matrix moments,  quadrature rules, orthogonal polynomials and the 
underlying Lanczos procedure are beautifully connected and turned into an efficient algorithm. In 
this paper, we have further developed the approach in a number  of practical aspects. Something 
old, something new, and something borrowed. Preliminary numerical results for different matrices 
demonstrate the high-performance of the new approach. 

Our  near future work includes studying the ill-conditioning problems and preconditioning 
techniques, improving the confidence bounds, and investigating orthogonal polynomials with 
variable sign [21, 5] and related quadrature rules to solve the estimation problem with u ~ v 
directly. The ultimate goal of this study is to develop truly efficient algorithms to solve such types of 
matrix computat ion problems where the matrices involved may be complex, non-Hermit ian and of 
order millions. These matrix computat ion problems are arising in modern  lattice QCD and other 
scientific computing fields. 
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