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Bai and Golub / Bounds for tr(A�1) and det(A) 2and det(A) of a symmetric positive de�nite matrix A. Throughout this paper, A willdenote an n-by-n symmetric positive de�nite matrix with eigenvalues�1 � �2 � � � � � �n:�(A) is the set of all eigenvalues. The parameters � and � denote the bounds for thesmallest and largest eigenvalues �1 and �n of A,0 < � � �1; �n � �:aij or (A)ij will denote the (i; j) entry of a matrixA. Using the eigenvalue decompositionand the de�nition of matrix function [6], it is easy to prove the identityln(det(A)) = tr(ln(A)) (1)for a symmetric positive de�nite matrixA. Therefore, instead of bounding det(A), we willbound ln(det(A)), which is turned into bounding tr(ln(A)). Under this reformulation, theproblems of bounding the quantities tr(A�1) and det(A) are uni�ed to bound tr(f(A))for f(�) = ��1 and ln�, respectively.We �rst note that the Kantorovich inequality(xTA�1x)(xTAx) � 14 ��1�n + �n�1 + 2� (xTx)2holds for all vectors x. For derivation of this inequality, see [9]. By using a simple trialvector x = (0; : : : ; 0; 1; 0; : : :; 0)T in the inequality and noting that the upper bound ismonotonically increasing in �n=�1, it yields(A�1)ii � 14aii ��� + �� + 2� : (2)The summation of the upper bound for all diagonal entries of A�1 gives a Kantorovich'supper bound for tr(A�1).Another approach for bounding tr(A�1) is to use variational functional, Robinsonand Wathen [13] show that1� + (�� aii)2�(�aii � sii) � (A�1)ii � 1� � (aii � �)2�(sii � �aii) ; (3)where sii =Pnk=1 a2ik. Hence the sums of the lower and upper bounds for all diagonal en-tries of A�1 give Robinson and Wathen's lower and upper bounds for tr(A�1), respectively.Two other types of bounds for (A�1)ii are also presented in [13], but more informationis required.The third approach is to use Gaussian quadrature and related theory. As discussedin [4, 5, 1], one �rst bounds the quantity xTf(A)x for a given vector x, then probabilisticbounds and estimates can be obtained for tr(f(A)) by using Monte Carlo simulation. Werefer to [1] for details.The new bounds derived in this paper also use Gaussian quadrature and relatedtheory. But they are exact lower and upper bounds for tr(f(A)) instead of probabilistic



Bai and Golub / Bounds for tr(A�1) and det(A) 3bounds as given in [1]. The new bounds are derived by directly considering the quantitytr(f(A)) instead of each diagonal entry of f(A). They are very cheap to compute. In anumber of examples our bounds are found to be tighter than Kantorovich's upper bound,and are equivalent to the Robinson and Wathen's bounds, which is computationally moreexpensive. Our experiences indicate that the probabilistic bounds presented in [1] are themost accurate, but they are also the most expensive ones in terms of computational costsand memory requirement.In section 2 we present the lower and upper bounds for tr(A�1) and tr(ln(A)). Anumber of examples, coming from the di�erent applications, and comparisons with theKantorovich's upper bound, Robinson and Wathen's bounds and the estimates usingMonte Carlo simulation are given in section 3. We give concluding remarks in section 4.2 Bounds for tr(A�1) and tr(ln(A))Let �r = tr(Ar) = nXi=1 �ri = Z �� �rd
(�); (4)where the weight function 
(�) of the Stieltjes integral is 
(�) = Pnj=1 I(� � �j), andI(�) is the unit step function: I(�) = 0 if � < 0 and I(�) = 1 if � � 0. Note that one caneasily compute �0 = n; �1 = nXi=1 aii; �2 = nXi;j=1a2ij = kAk2F :Our �rst task is to use �0, �1 and �2 and the parameters � and � to determine a lowerand an upper bound for ��1 = tr(A�1).The approach is to use the classical Gaussian quadrature and related theory, see forexample [2]. Speci�cally, we use the Gauss-Radau quadrature rule. By the rule, theintegral in (4) can be written as�r = Z �� �rd
(�) = ��r +R[�r]; (5)where ��r is the following quadrature formula��r = w0tr0 +w1tr1; (6)w0 and w1 are weights and to be determined. t0 and t1 are nodes. The node t0 isprescribed, say t0 = � or �. t1 is unknown and to be determined. The remainderR[�r] = 16r(r � 1)(r � 2)�r�3 Z �� (�� t0)(� � t1)2d
(�)for some � < � < �. If R[�r] � 0, ��r is a lower bound of �r and if R[�r] � 0, ��r is aupper bound of �r .From (6), we see that ��r satis�es a second order di�erence equationc��r + d��r�1 � ��r�2 = 0 (7)



Bai and Golub / Bounds for tr(A�1) and det(A) 4for certain coe�cients c and d. The nodes t0 and t1 are the roots of the characteristicpolynomial p(�) = c�2 + d� � 1: (8)To determine the coe�cients c and d, by using (7) with the fact ��r = �r for r = 0; 1; 2,and the prescribed node t0 being the root of the characteristic polynomial (8), we havec�2 + d�1 � �0 = 0;ct20 + dt0 � 1 = 0:Solving the above linear equations for c and d yields� cd � = � �2 �1t20 t0 ��1 � �01 �Once having the coe�cients c and d, the node t1 of the quadrature ��r is given byt1 = �1=(t0c).For determining the weights w0 and w1, we note that�1 = w0t0 +w1t1;�2 = w0t20 +w1t21:Then � w0w1 � = � t0 t1t20 t21 ��1 � �1�2 � :To bound tr(A�1) = ��1, writing the di�erence equation (7) with r = 1, we havec��1 + d��0 � ���1 = 0:i.e., ���1 = c��1 + d��0 = � �1 �0 � � �2 �1t20 t0 ��1 � �01 � :By the Gauss-Radau quadrature rule (5) with r = �1, we have��1 = ���1 +R[��1];where the remainder R[��1] = � 1�4 Z �� (� � t0)(� � t1)2d
(�)for some � < � < �. If the prescribed node t0 = �, R[��1] � 0, then ���1 is an upperbound of ��1. If t0 = �, R[��1] � 0, then ���1 is a lower bound of ��1. In summary, wehave the following bounds for tr(A�1).



Bai and Golub / Bounds for tr(A�1) and det(A) 5Theorem 1 (Lower and upper bounds for tr(A�1))Let A be an n-by-n symmetric positive de�nite matrix, �1 = tr(A), �2 = kAk2F and�(A) � [�; �] with � > 0, then� �1 n � � �2 �1�2 � ��1 � n1 � � tr(A�1) � � �1 n � � �2 �1�2 � ��1 � n1 � (9)Let us turn to our second task for bounding tr(ln(A)). Note that the identity (1) canbe further written asln(det(A)) = tr(lnA) = nXi=1(ln�i) = Z �� (ln�)d
(�);where the weight function 
(�) of the Stieltjes integral is the same as the weight functionde�ned in (4). Again, by using the Gauss-Radau quadrature rule, we havetr(ln(A)) = Z �� (ln�)d
(�) = I[ln�] +R[ln�];where the quadrature term I[ln�] isI[ln�] = w0 ln(t0) + w1 ln(t1):The remainder R[ln�] = 23 1�3 Z �� (� � t0)(�� t1)2d
(�)for some � < � < �. Therefore, if t0 = �, R[ln�] � 0, then I[ln�] is a lower bound oftr(ln(A)). If t0 = �, R[ln�] � 0, then I[ln�] is an upper bound. Therefore, we derivethe following bounds for tr(ln(A)).Theorem 2 (Lower and upper bounds for tr(ln(A)))Let A be an n-by-n symmetric positive de�nite matrix, �1 = tr(A), �2 = kAk2F and�(A) � [�; �] with � > 0, then� ln� ln t � � � t�2 t2 ��1 � �1�2 � � tr(ln(A)) � � ln� ln �t � � � �t�2 �t2 ��1 � �1�2 �(10)where t = ��1 � �2�n� �1 and �t = ��1 � �2�n � �1The bounds (9) and (10) involve only the trace of the lower orders of the matrixpower Ar , namely, �0 = tr(A0) = n, �1 = tr(A1) and �2 = tr(A2). They can be easilycomputed. If the trace of the higher orders of the matrix power Ar, r � 3, are available,then using the principles discussed above, we can derive tighter bounds.The parameters � and � for the bounds of eigenvalues of A must be provided, whichhappens to be required in all such bounds discussed in Section 1.



Bai and Golub / Bounds for tr(A�1) and det(A) 6Table 1Lower and upper bounds for tr(A�1)Matrix (order) \Exact" MC estimation Lower bound Upper boundPoisson (900) 5:12644 � 102 5:02012 � 102 2:60852 � 102 8:74445 � 103Wathen (341) 6:16011 � 102 6:21092 � 102 4:49424 � 102 9:29451 � 102Heat 
ow (625) 3:65722 � 102 3:65179 � 102 3:59979 � 102 3:73996 � 1023 ExamplesIn this section, we use four examples to show the tightness of the bounds given in (9)and (10). We will also compare with the Kantorovich's upper bound (2), Robinson andWathen's bounds (3) and the approach using Monte Carlo simulation (henceforth the MCestimation) described in [1].Numerical experiments are carried out in Matlab environment on a SUN Sparcstation10. The so-called \exact" value of tr(A�1) is computed by analytic formulas if available,or by �rst computing the inverse using function inv in Matlab, and then calculating thetrace. For the \exact" value of tr(ln(A)) = ln(det(A)), we use the analytic formula ifavailable, or �rst compute the Cholesky decomposition of A using Matlab function choland then compute the natural logarithm of the product of diagonals of Cholesky factor.Example 1 (Pei matrix): Consider the so-called n-by-n Pei matrix A = �I +uuT , whereu = (1; 1; : : : ; 1)T [8]. It is easy to see that A has two distinct eigenvalues � and n + � .The eigenvalue � has multiplicity n � 1. If � > 0, A is symmetric positive de�nite. Bythe Sherman-Morrison formula [6], the inverse of A can be written asA�1 = 1� I � 1� (� + n)uuTThen tr(A�1) = n� � n�(�+n) and tr(ln(A)) = (n�1) ln � +ln(� +n). It is easy to computethat �1 = tr(A) = (�+1)n and �2 = tr(A2) = n2+� (�+2)n. If let parameters � = � and� = n+� , then by straightforward algebraic calculation, both lower and upper bounds fortr(A�1) in (9) are equal to the exact value. Similarly, one can also easily show that bothlower and upper bounds for tr(ln(A)) in (10) are also equal to the exact value. For thisexample, the bounds (9) and (10) are perfect! Of course, one can also verify that for thisexample, there are no intergration errors (the remainders are zero) in the Gauss-Radauquadrature rule.For this example, Robinson and Wathen's bounds for tr(A�1) are also equal to theexact value.Example 2 (Poisson matrix): The matrix of order m2 is a block tridiagonal matrix fromthe 5-point central di�erence discretization of the 2-D Poisson's equation on a m � msquare mesh [8]. It can be shown that the parameters � and � for the bounds of thesmallest and largest eigenvalues are � = 2� �m+1�2 and � = 8, respectively. In Tables 1and 2, we have tabulated the exact values for tr(A�1) and tr(ln(A)), the estimated valuesby the MC estimation [1]. and the lower and upper bounds given in (9) and (10) for the900 by 900 Poisson matrix (i.e., m = 30).



Bai and Golub / Bounds for tr(A�1) and det(A) 7Table 2Lower and upper bounds for tr(ln(A))Matrix (order) \Exact" MC estimation Lower bound Upper boundPoisson (900) 1:06500 � 103 1:06023 � 103 4:73862 � 102 1:16857 � 103Wathen (341) �1:20071 � 102 �1:20263 � 102 �2:00165 � 102 �6:86595 � 101Heat 
ow (625) 3:51679 � 102 3:50715 � 102 3:47348 � 102 3:54997 � 102The Kantorovich's upper bound for tr(A�1) is 2:20208 � 104. Robinson and Wathen'slower and upper bounds are 2:60969 �102 and 8:73279 � 103. Note that the estimates fromthe Monte Carlo simulation for tr(A�1) and tr(ln(A)) are only at 2% and 0.4% of relativeerrors of the actual values, respectively [1].Example 3 (Wathen matrix): The matrix A is \wathen(nx; ny)" in the set of Matlabtest matrices collection by Higham [8]. It is a consistent mass matrix in �nite elementcomputations for a regular nx-by-ny grid of 8-node (serendipity) elements in 2 spacedimensions (see [16]). The resulting matrix is of order n = 3nxny + 2nx + 2ny + 1. LetD be the diagonals of A, then realistic bounds for the eigenvalues of D�1A are givenby Wathen [17]. In our numerical experiment, we let nx = ny = 10. Then the matrixA is of order n = 341 and � = 0:25 and � = 4:5. The bounds for tr(D 12A�1D 12 ) andtr(ln(D� 12AD� 12 )) are tabulated in Table 1 and 2.The Kantorovich's upper bound for tr(D 12A�1D 12 ) is 1:70974 � 103 and the Robinsonand Wathen's lower and upper bounds are 4:53280 � 102 and 9:19952 � 102, respectively.Again, note that the estimated values of the MC estimation are only at 0.8% and 0.1%of relative errors of the actual values.Example 4: This test matrix is from [10], see also [13]. The matrix is resulted fromthe implicit �nite di�erent discretization of a linear heat 
ow problem. It is a m2 by m2block tridiagonal matrix of the formA = 0BBBB@ D CC D . . .. . . . . . CC D 1CCCCA ;where D is a m � m tridiagonal matrix with 1 + 4� on diagonal, and �� on super- andsub-diagonal, and C is a diagonal matrix with diagonal entries �. � is the ratio of thetime step and the square of grid size. The Gershgorin circle theorem gives � = 1 and� = 1 + 8� for the eigenvalue bounds of A. We have tabulated in Tables 1 and 2 thebounds for tr(A�1) and tr(ln(A)), respectively, where n = 625 (m = 25) and � = 0:5.The Kantorovich's upper bound for tr(A�1) is 4:32692 � 102 and the Robinson andWathen's lower and upper bounds are 3:59996 � 102 and 3:73972 � 102, respectively.



Bai and Golub / Bounds for tr(A�1) and det(A) 84 Concluding RemarksSimple bounds for tr(A�1) and tr(ln(A)) of a symmetric positive de�nite matrix A arederived by using Gaussian quadrature and related theory. The bounds involve only n(the order of A), tr(A) and kAk2F and the parameters � and �, namely for the bounds ofeigenvalues of A.From the numerical examples presented in Section 3 and numerous other experimentsconducted, our bounds for tr(A�1) are found to be tighter when simple trial vectorsare used in the Kantorovich's bound, and are equivalent to the Robinson and Wathen'sbounds. But it is generally poorer than the probablistic bounds and estimations fortr(A�1) and ln(det(A)) derived by using Gaussian quadrature andMonte Carlo simulation[1]. The latter costs signi�cantly more arithmetic operations and memory. But a fullyparallelism scheme can be developed for the simulation [1].We point out that using Gaussian quadrature and related theory, we have the ad-vantage of easily extending the approach for tr(A�1) to tr(ln(A)), while the approachesbased on Kantorovich inequality and variational inequality do not enjoy. If the traces ofhigher orders of the matrix power Ar , r � 3, are available, then bounds can be furthertightened by using the same technique. Moreover, one could use modi�ed moments toget improved estimates of the quadrature rule.5 AfternoteWhile we were �nishing up this paper, we read an article by Ortner and Kr�auter on lowerbounds for the determinant and the trace of the inverse in the most recent issue of LinearAlgebra and its Applications [12]. One central problem studied by Ortner and Kr�auteris to �nd lower bounds of tr(P�1) and det(P�1), where P = 1mXTX, X is a given m-by-n (m � n) full rank matrix, whose rows have unit length. This problem arises fromaccuracy considerations in real second-rank tensor measurements of single crystals [11].By using standard matrix theory, one can show that the condition number of the matrixX is related to the quantity tr(P�1), namely,�F (X) = kXkF kXykF =ptr(P�1):where Xy is the Moore-Penrose inverse of X [6]. Therefore, a lower bound of tr(P�1)also gives a lower bound of the condition number of X.Using an approach based on matrix theory and combinatorics, various lower boundsof tr(P�1) are derived in [12]. The sharpness of those lower bounds are demonstratedfor small m and n ([12, Example 3]). Our approach yields the same lower bounds fortheir set of test problems, provided that the extreme eigenvalues of P are available. Asindicated by Ortner and Kr�auter [12], in most cases, it is very hard, if not impossible, to�nd a suitable con�guration of the row vectors of X to attain the optimal lower bound.Since our approach gives both lower and upper bounds of the quantity tr(P�1), it mightprovide a way to assess how far a given con�guration is from the optimal con�guration.It would be interesting to make further investigations in this direction.
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