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SEQUENCE  DATA-ANALYSIS

Clustering sequences – phylogenetic trees
Basics of molecular evolution
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Leaves, external nodes 1,2,3,4,5 are
observations which may be, depending on the
situation, sequences from different  species,
populations etc. They are often called OTUs =
Operational Taxonomic Units. Internal nodes
6,7,8 are hypothetical sequences in ancestral
units

The tree is unrooted.

In case evidence exists for depicting the
root  (for example, a or b), a rooted tree
can be constructed.

For example, is there is data
from different human populations
and from chimpanzee, this animal
is an outgroup and a means
for rooting a tree

Rooting requires
external evidence and
cannot be done on the basis of the data which
is under a given study.
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BASIC TERMINOLOGY
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NUMBER OF POSSIBLE TOPOLOGIES
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The number of unrooted trees
Bn = (2(n – 1) – 3)bn-1 = (2n – 5)bn-1 = (2n – 5) * (2n – 7) * …* 3 * 1  =

(2n – 5)! / ((n-3)!2n-3), n > 2
Number of rooted trees

b’n = (2n – 3)bn = (2n – 3)! / ((n-2)!2n-2),     n > 2

that is, the number of unrooted trees times the number of branches in the trees



MAXIMUM  PARSIMONY IN PHYLOGENY INFERENCE

Parsimony, Occams razor, a philosophical concept.
Monk William of Ockham (1280-1350):
“Entitia non sunt multiplicanda praeter necessitate”,  entities should not be
multiplied more than necessary,
“The best hypothesis is the one requiring the smallest number of assumptions”

The principle of maximum parsimony (MP) in phylogeny inference involves the
identification of  a  tree topology that requires the smallest  number of  changes to
explain the observed differences. The shortest pathway  leading  to these is chosen
as the best tree.

Two subproblems:
Determining the amount of character change, or tree length, required

by any given tree.
Searching over all possible tree topologies to find the tree that minimize

this length.
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INFORMATIVE AND UNINFORMATIVE SITES FOR PARSIMONY ANALYSIS

A nucleotide site is
informative only if it favors a
subset of trees over the other
possible trees. Invariant (1, 6,
8 in the example) and
uninformative sites are not
considered.

Variable sites:
Site 2 is  uninformative
because all three possible  trees
require  1 evolutionary change,
G ->A.
Site 3 is  uninformative because
all trees require 2  changes.
Site 4 is uninformative because
all trees require 3 changes.
Site 5 is informative because
tree I requires one change, trees
II and III require two changes
Site 7 is informative, like site 5
Site 9 is informative  because
tree II requires one change,
trees I and III require two.

An example, four OTUs (operational taxonomic units), nine
sites

1  2  3  4  5  6  7  8  9
OTU a     A A G  A  G  T  T C  A
OTU b     A  G  C  C G  T  T C  T
OTU c     A  G  A  T  A  T  C  C A
OTU d     A  G  A  G  A  T  C  C T

Four OTUs can form three possible unrooted trees, I, II, III

tree I            tree II          tree III
((a,b),(c,d))   ((a,c),(b,d))   ((a,d), (b,c)) NEWICK-formats

site 3

site 5

site 9
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A site is informative only when there are at least two different kinds of nucleotides at
the site (among the OTUs), each of which is represented in at least two OTUs.

Identification of all informative sites and for  each possible tree the minimum
number of substitutions at each informative site is calculated:

In the example for sites 5, 7 and 9:
tree I requires   1, 1, and 2 changes
tree II requires  2, 2, and 1 changes
tree III requires 2, 2, and 2 changes.

Summing the number of  changes over all the informative sites for each possible
tree and choosing the tree associated with the smallest number of changes: Tree I is
chosen because it requires 4  changes, II and III require 5 and 6 changes.

In the case of 4 OTUs an informative site can favor only one of the three possible
alternative trees. For example, site 5 favors tree I over trees II and III, and is thus said
to support tree I. The tree supported by the largest number of informative sites
is the most parsimonious tree. In the cases where more than 4 OTUs are involved,
an informative site may favor more than one tree and the maximum parsimony tree
may not necessarily be the one supported by the largest number of informative sites.

INFERRING THE MAXIMUM PARSIMONY TREE
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The rule:
The set at an interior node is the intersection of its two immediately

descendant sets if the intersection is not empty.
Otherwise it is the union of the descendant sets.
For every occasion that a union is required to form the nodal set, a

nucleotide substitution at this position must have occurred at some point
during the evolution for this position. Thus, counting the number of unions
gives the minimum number of substitutions required to account for
descendant nucleotides from a common ancestor, given the phylogeny
assumed at the outset.

The example next page (taken from textbook W-H Li, Molecular evolution, 1997)
considers the case of six OTUs, and one particular site, at which the nucleotides are

....site......
OTU 1     C
OTU 2     T
OTU 3     G
OTU 4     T
OTU 5     A
OTU 6     A

The six OTU´s have five (unknown, to be inferred) ancestors: 7, 8, 9, 10, 11.

FITCH´S  PARSIMONY
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FITCH´S PARSIMONY, EXAMPLE

AT

T

AGT

CT          GT

C     T       G    T        A        A

11

10

9

7 8

1 2 3 4 5 6

NEWICK-format, the commonly agreed format for phylogeny topologies
(not only parsimony), of the tree is ( ( ( 1,2 ) ( ( 3,4 ) 5 ) ) 6 )

One possible tree topology for the example site (previous page).
The nucleotide at nodes 7, 8 and 9 cannot be determined uniquely
under the parsimony rule. At node 10 T is chosen as it is shared by
the sets at the two descendant nodes, 7 and 9. The nucleotide at
node 11 cannot be determined uniquely. Parsimony requires it to
be either A or T.

At nodes 7, 8 and 10 nucleotide A  could be included as a
possible ancestral nucleotide because A is a possible common
ancestral nucleotide (node 11) of all the six OTUs.

Consider other possible topologies for the example site. For example:

( ( ( 2,4 ) 1 ) ( 3 ( 5,6 ) ) )

Inferred nucleotides at nodes 7, 8, 9, 10 and 11 ?
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In the example tree (previous page), the nucleotide at node 10 is the
intersection of the sets at nodes 7 and 9. The set at node 9 is the union of the
sets at nodes 8 and 5.

Counting the number of unions gives the minimum number of substitutions
required to account for descendant nucleotides from a common ancestor, given
the phylogeny assumed at the outset. In the example this number is 4.

There are many other alternative trees, each of which requires 3
substitutions. Thus, unlike the case of four OTUs, an informative site
may favor many alternative trees.

FITCH´S PARSIMONY
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The total number of substitutions at both informative and uninformative sites in a
particular tree is called the tree length. When the number of OTUs is small, it is possible to
look at all possible trees, determine their length, and choose among them the shortest
one(s) = exhaustive search.  Large number of sequences (more than about 12) makes
exhaustive searches impossible.

Short-cut algorithms,  for example ´branch-and-bound´: First an arbitrary tree is
considered  (or a tree obtained by another methods, for example some distance method),
and compute the minimum  number of substitutions for the this tree, which is considered as
the “upper bound” to which the length of any other tree is compared. The rationale is that
the maximum parsimony tree must be either equal in length to this tree or shorter.

Above 20 sequences  heuristic searches are needed:  only a manageable subset of all
the possible trees is examined. Branch swapping (rearrangement) is used to generate
topologically similar trees from a initial one. Subtree pruning and regrafting is one
method.

PARSIMONY ANALYSES

In the course Biometry and bioinformatics II we go further with parsimony analyses,  as well as other methods,
maximum likelihood and  bayesian phylogenetics.

In BB_I assignments 1, 2 and 3 we use only the distance matrix based methods UPGMA and neighbor joining,
and  parsimony for assignment 1, by using the software MEGA5.



PHYLOGENY METHODS BASED ON DISTANCE MATRICES

Distances are computed for all pairs of OTUs and a phylogenetic tree is
constructed by considering the relationships among these distance values.
Distances are numbers of nucleotide substitutions between sequences.
Distances are simple p-distances or based on some nucleotide substitution
model.

The unweighted pair-group method with arithmetic mean, UPGMA, is
the simplest method for tree construction. It was originally developed in
1950´s for constructing taxonomic phenograms, i.e. trees that reflect the
phenotypic similarities between OTUs.

The most widely used method is the neighbor-joining, NJ, algorithm,
developed in 1987. NJ tree is usually the first tree constructed for a given
research problem, followed by other methods, parsimony, maximum
likelihood and bayesian trees.
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Distance matrix D = (dij) gives pairwise distances for leaves of the phylogenetic tree

In addition, the phylogenetic tree will now specify distances between leaves and internal
nodes

Distances dij in evolutionary context satisfy the following conditions:
Symmetry: dij = dji for each i, j
Distinguishability: dij  0 if and only if i  j
Triangle inequality: dij  dik + dkj for each i, j, k
Distances satisfying these conditions are called metric
In addition, evolutionary mechanisms may impose additional constraints on the
distances: additive and ultrametric distances

A tree is called additive, if the distance between any pair of leaves (i, j) is the sum of the
distances between the leaves and a node k on the shortest path from i to j in the tree

dij = dik + djk

A rooted additive tree is called an ultrametric tree, if the distances between any two
leaves i and j, and their common ancestor k are equal

dik = djk

Edge length dij corresponds to the time elapsed since divergence of i and j from the
common parent ,i.e.  edge lengths are measured by a ”molecular clock” with a constant
rate

DISTANCES
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Only vertical segments of the tree have
correspondence to some distance dij:

Horizontal segments act as connectors.
d8,9

Distances to be ultrametric can be found by the three-point condition:
D corresponds to an ultrametric tree if and only if for any three species
(OTUs)   i, j and k, the  distances satisfy dij  max(dik, dkj)

dik = djk for any two
leaves i, j and any
ancestor k of i and j

Three-point
condition: there are
no leafs i, j for which
dij > max(dik, djk)
for some leaf k.

ULTRAMETRIC  TREE
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The UPGMA method employs a sequential clustering algorithm, in which local
topological relationships are inferred in order of decreasing similarity and a phylogenetic
tree is built in a stepwise manner.

The two OTUs that are most similar to each other, i.e. have the shortest
distance, are first identified.

The two OTUs are treated as a new single OUT, a composite OTU
Then, from among the new group of OTUs, the pair with highest similarity is

identified, and so on, until only two OTUs are left.

Consider a case of four OTUs, A, B, C and D. The pairwise distances are given by the
following matrix

UPGMA -method
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A B C

B dAB

C dAC dBC

D dAD dBD dCD

Let us assume that dAB has the
smallest value. Then, A and B are
the first to be clustered, and the
branching point is positioned at a
distance of dAB /2 .

A new distance matrix is computed
by using AB composite OTU.
d(AB)C = (dAC + dBC) / 2
d(AB)D = (dAD + dBD) / 2

(AB) C

C d(AB)C

D d(AB)D dCD



UPGMA –method - a worked example
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.

Tree reconstruction from six sequences, A-F.

(A) The distance matrix showing that A and D are closest. They are
selected in the first step to produce internal node V (in (B)).

(B) The distance matrix including node V from which it can be
deduced that V and E are closest, resulting in internal node W.

(C,D) Subsequent steps defining nodes X, Y and Z and resulting in the
final tree (E).

This picture is from : Zvelebid&Baum, Understanding Bioinformatics, 2008,  Garland Science, Page 279.



This method is not in MEGA5-software

(A) In the first step the shortest distance is used to identify the two
clusters (A,C)  which are combined to create the next internal
node. A temporary cluster (W) is defined as all clusters except
these two, and the distances calculated from W to both A and C.
The method then uses equations b1 = ½(d AB + d AC – d BC,   b 2 = ½(d
AB + d BC – d AC), b 3 = ½(d AC + d BC – D AB) to calculate  the branch
lengths from A and C to the internal node that connects them.

(B) A and C are combined into the cluster X and the distances
calculated from the other clusters. After identifying B and X as the
next clusters to be combined to create cluster Z, the temporary
cluster Y contains all other sequences. X is the distance b3 from the
new internal node, and the distance between the internal nodes is
b4. Branch length b4 is negative (not realistic); in future
calculations this branch is treated like all others.

(C) Combining sequences A,B and C into cluster Z, the sequences D   and
E are added to the tree in the final step.

(D) The final tree has a negative branch length. The tables give the
patristic distances (those measurer on the tree itself) and the errors
(eij). The tree has a wrong topology, as becomes clear with the
neighbor-joining tree from the same data.
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FITCH-MARGOLIASH  METHOD  - a worked example

This picture is from : 277. Zvelebid&Baum, Understanding Bioinformatics, 2008,  Garland Science, Page 281.



Neighbor joining has similarities to UPGMA, Differences in the choice of function f(C1, C2)
and how to assign the distances

Find clusters C1 and C2 that minimise a function f(C1, C2)
Join the two clusters C1 and C2 into a new cluster C
Add a node to the tree corresponding to C
Assign distances to the new branch

The distance dij for clusters Ci and Cj is

Let u(Ci) be the separation of cluster Ci from other clusters defined by
where n is the number of clusters.

Instead of trying to choose the clusters Ci and Cj closest to each other, neighbor joining
at the same time

Minimises the distance between clusters Ci and Cj and
Maximises the separation of both Ci and Cj from other clusters

NJ  is easy to use, and understand  the results. However, the algorithm is not easy stuff.
In case you want to learn more about NJ, see the attached original paper.

NEIGHBOR JOINING, NJ,  ALGORITHM
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The distance matrix is the same as in the Fitch-Margoliash
example.
At each step the distances are converted by using the algorithm
which minimizes the total tree distance (the minimum evolution
principle).

The first step:

(A) Star-tree in which all sequences are joined directly to a
single internal node X with no internal branches.

(B)   After sequences 1 and 2 have been identified as the first
pair of nearest-neighbors, they are separated from node X
by and internal node Y. The method calculates the branch
lengths from sequences 1 and 2 to node Y to complete the
step.

18
This picture is from : Zvelebid&Baum, Understanding Bioinformatics, 2008,  Garland Science,  Page 284

NJ-METHOD  - a worked example



Flow–diagram including the
different steps in building
phylogenetic trees .

Phylogeny reconstructionPhylogeny reconstruction
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This picture is modified from : Zvelebid&Baum, Understanding Bioinformatics, 2008,  Garland Science,  Page 277.



http://evolution.genetics.washington.edu/phylip/software.html
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MODELLING SEQUENCE EVOLUTION

Sequence differences that we observe now (among existing species or other items
which are compared) are products of past mutation events, substitutions.

Understanding the substitution process needs modelling.

Historically, modelling started by the concept molecular clock.

Parametrization: one parameter, Jukes-Cantor model more realistic models
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CURRENT  DIFFERENCES ARE PRODUCTS OF PAST SUBSTITUTION EVENTS

Two DNA sequences, 1 and 2,
that have descended from an
ancestral sequence and
accumulated point mutations since
their divergence from each other.

Note that although 12 mutations
have taken place, there are only 3
detectable differences between 1
and 2.

single substitution

multiple
coincidental

parallel
convergent

back substitution

ancestral sequence

sequence 1                          sequence 2
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THE  CONCEPTTHE  CONCEPT  ´́MOLECULAR CLOCKMOLECULAR CLOCK´́

In 1904 G.H.F. Nuttal measured the amount of precipitate of normal blood serum
from great apes, monkeys and some other mammals. His crude method, using
rabbit antiserum directed against human serum, indicated that the amount of
precipitate declined with the paleontological distance from humans

The immunological method was later refined and played an important role in
reconstructing primate phylogenies  by Morris Goodman (1962, Hum Biol 34:
104-150, Evolution of the immunologic species specificity of human serum
proteins).

In 1962 Emile Zuckerkandl and Linus Pauling worked on hemoglobin
evolution and expressed the idea of molecular anthropology as a new discipline .
They calibrated  the amino acid substitution rate in mammalian hemoglobins and
estimated the divergence times of hemoglobins ( Molecular disease, evolution and
genic heterogeneity, pp 189-225 in Horizons in Biochemistry).

The historical conclusion was: the average rate of molecular evolution is constant
and observations can be used for estimating time scales.
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HISTORICAL  RESULTSHISTORICAL  RESULTS

Shark Carp Newt Chick Echi Kang   Dog Human
Shark 59.4 61.4 59.7 60.4 55.4 56.8 53.2
Carp 53.2 51.4 53.6 50.7 47.9 48.6
Newt 44.7 50.4 47.5 46.1 44.0
Chicken 34.0 29.1 31.2 24.8
Echidna 34.8 29.8 26.2
Kangaroo 23.4 19.1
Dog 16.3
Human

Hemoglobin -chain
% amino acid differences

Percent amino acid differences when
the -hemoglobin chains are compared
among eight vertebrates together with
their times of divergence (on the basis of
paleontological views).

In mammals the  -chain consists of 141
amino acids.

Strong parallelism between divergence
time and amino acid differences.

Million
Years

440

400

350

270

225
180
135
70

(? )  Duplication to form
- and  -chains
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HISTORICAL  LOOK AT NUCLEOTIDE CHANGE MODELLINGHISTORICAL  LOOK AT NUCLEOTIDE CHANGE MODELLING

In 1965 Emile Zuckerkandl and Linus Pauling proposed the theory of molecular
clock: the rate of molecular evolution is approximately constant over time for all
the proteins in all lineages. This was the starting point for modelling approach to
provide understanding for the first results concerning amino acid sequence
differences between different animal species, at certain proteins.

It has been known for a long time that the constancy is not true and that time of
divergence between sequences cannot be dated simply by measuring the
number of changes between sequences. Mutation rates vary among and within
genomes, being affected by many factors such as chromosomal position, G+C
(vs. A+T) content etc. Molecular clocks tick at different rates in different biological
contexts. We come back to this later during the course

The proposition by Thomas Jukes and Charles Cantor (in 1969, a
response to Zuckerkandl-Pauling theory), was important as regards subsequent
achievement in modelling the DNA substitution process. Jukes and Cantor
formulated a stochastic model in which nucleotide substitutions occur at an
equal rate.

Subsequently the model has been made more realistic by taking into account
increased empirical knowledge about nucleotide substitutions.
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HISTORY: JUKES TELLS HOW THE IDEA AROSE

http://www.garfield.library.upenn.edu/classics1990/A1990CZ67100002.pdf
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HISTORICAL  LOOK AT NUCLEOTIDE CHANGE MODELLING

Since 1980´s it has been known that misincorporation errors (mutations) during
DNA replication or repair are facilitated if a base is replaced by similar one and thus
transitions (purine replaced by a purine, or pyrimidine replaced by pyrimidine) occur
more frequently than transversions (purine replaced by a pyrimidine or vv).
Differences in mutation rate tend to decrease TA and CG dimers and to produce an
excess of CT and TG dimers, and many other kinds of biased processes (cf. the
constancy in the Jukes-Cantor model).

The development of models of sequence evolution is an active field and there is a
large number of models.

Two main approaches to building models of sequence evolution: An empirical one,
using properties calculated through comparisons of large numbers of observed
sequences (for example, counting apparent replacements between many closely
related sequences). Empirical models result in fixed parameter values which are
estimated only once and then assumed to be applicable to other datasets (=> easy to
use computationally). The alternative approach is to build models parametrically on
the basis of chemical or biological properties of DNA and amino acids. For example,
incorporating a parameter to describe the relative frequency of transition to and
transversion substitutions in the sequences studied. Both methods result in Markov
process models.   (In Biometry and bioinformatics II we go further with this.)
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To study the dynamics of nucleotide substitution, assumptions on the probabilities of
substitutions of one nucleotide by another are needed.

Assumption: all nucleotide substitutions occur with equal probabilites, 

The rate of substitution for each nucleotide is 3  per unit time

A   T   C   G

A            

T            

C      

G      

At time 0:  Assumption that  at a certain nucleotide site there is A, PA(0) = 1
Question: probability that this site is occupied by A at time t , PA(t) ?
At time 1, probability of still having A at this site is

PA(1) = 1 - 3                                                           (1)

 is the probability of A changing to T, C, or G

JUKESJUKES--CANTOR MODEL, ONE PARAMETERCANTOR MODEL, ONE PARAMETER
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The probability of the site having A at time 2 is

PA(2) = (1 - 3  )P(A1) +  [1 – PA(1)]                                  (2)

This includes two possible courses of events:

t = 0                                    t = 1                                     t = 2
A                                         A A

no substitution                    no substitution

A                                     T or C or G                                 A
substitution                            substitution

The following recurrence equation holds for any t

PA(t+1) = (1 - 3  )PA(t) + [1 – PA(t) ]                                    (3)

Note that this holds also for t = 0, because PA(0) = 1 and thus

PA(0+1) =  (1 – 3 ) PA(0) +  [1 – PA(0) ] = 1 - 3
which is identical with equation (1).

JUKESJUKES--CANTOR MODEL, ONE PARAMETERCANTOR MODEL, ONE PARAMETER
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The amount of change in PA(t) per unit time, rewriting equation (3):

PA(t) =  PA(t+1) – PA(t) = - 3 PA(t) + [1 – PA(t) ]  =  - 4 PA(t) +            (4)

Approximating the previous discrete-time model by a continuous-time model, by
regarding PA(t) as the rate of change at time t. With this approximation equation (4) is
rewritten as

dPA(t) / dt =  - 4 PA(t) +                                           (5)

The solution of this first-order linear differential equation is

PA(t) = ¼  +  (PA(0) – ¼ )e -4 t (6)

The starting condition was A at the given site, P A(0) = 1, consequently

PA(t) = ¼  + ¾ e -4 t (7)

Equation (6) holds regardless of the initial conditions, for example if the initial
nucleotide is not A, then PA(0) = 0, and the probability of having A at time t

PA(t) = ¼  + ¼ e -4 t (8)

JUKESJUKES--CANTOR MODEL, ONE PARAMETERCANTOR MODEL, ONE PARAMETER
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Equations (7) and (8) describe the substitution process. If the initial
nucleotide is A, then PA(t) decreases exponentially from 1 to ¼ . If the initial
nucleotide is not A, then PA(t) will  increase monotonically from 0 to ¼ .

Under this simple model, after reaching  equilibrium, PA(t)=PT(t)=PC(t)=PG(t)
for all subsequent times.

Equation (7) can be rewritten in a more explicit form to take into account
that the initial nucleotide is A and the nucleotide at time t is also A

PAA(t) = ¼  + ¾ e -4 t (9)

If the initial nucleotide is G instead of A, from equation (8)

PGA(t) = ¼  + ¼ e -4 t (10)

Since all the nucleotides are equivalent under the Jukes-Cantor model, the
general probability, Pij(t) , that a nucleotide will become j at time t, given that it
was i at time 0, equations (9) and (10) give the general probabilities Pii(t) and
Pij(t), where  j.

JUKESJUKES--CANTOR MODEL, ONE PARAMETERCANTOR MODEL, ONE PARAMETER
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The Jukes-Cantor –model was introduced in 1969 when virtually nothing was known
about nucleotide substitution

In 1980 Motoo Kimura proposed different parameters for transitions and
transversions.

Transition is a nucleotide change between purines,  A  and G, and pyrimidines,

T and C.  Transversion is a purine – pyrimidine change.

The rate of transition change is  and transversion change is  per unit time

A   T    C   G

A            

T                

C                

G          

TWO PARAMETERS,TWO PARAMETERS, KIMURAKIMURA´́ss MODELMODEL
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FLOW-DIAGRAM OF THE MOST WIDELY USED SUBSTITUTION MODELS

Starting with the simple Jukes-Cantor model, more general models are obtained by
allowing unequal nucleotide frequencies and/or more than one substitution parameter.
The most general model of this type is the GTR model that allows unequal base
frequencies and prescribes a different substitution parameter for each of the six pairs
of different nucleotides.
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Two approaches for model selection:

Empirically using properties calculated through comparisons of large numbers of observed
sequences. For example simply counting apparent replacements between many closely related sequences. Empirical
models result in fixed parameter values which are estimated only once and the n assumed to be applicable to all  datasets =>
computationally easy to use

Parametrically on the basis of the chemical or biological properties of DNA and amino acids. For
example, incorporating a parameter to describe the relative frequency of transition (purine-purine,  pyrimidine-pyrimidine) and
transversion (purine –pyrimidine).   Parameter values are derived from the dataset in each particular  analysis.

Both methods result in Markov process models, defined by matrices containing the relative rates (=the relative numbers, on
average, and per unit time). From these are calculated the probabilities of change from any nucleotide to any other nucleotide,
including the probability of remaining the same, over any period of evolutionary time at any site.

The likelihood framework permits estimation of parameter values and their standard errors from the observed data (with no
need for any a priori knowledge).

For example, a transition / transversion bias estimated as  = 2.3 +/- 0.16 effectively excludes the possibility that there is no
such bias (  = 1), whereas  = 2.3 +/- 1.6 does not.

Likelihood ratio tests compare two competing models, using their maximized likelihoods with a statistic, 2 ,  that measures
how much better an explanation of the data the alternative model gives. To perform a significance test, the distribution of
values of 2  expected under the simpler hypothesis is required. If the observed value of 2  is too great to be consistent with
this distribution (P-values), the simpler model is rejected in favour of the more complex model.

When two models being compared are nested, the simpler model being a special case of the more complex model obtained
by constraining certain free parameters to take particular values, then the required distribution for 2  is usually a 2 distribution
with the number of degrees of freedom equal to the difference in the number of parameters between the two models.

Statistical model selection will be in the program of Biometry and bioinformatics II.
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.RELATIONSHIPS  AMONG SUBSTITUTION MODELS – AN  EXAMPLE

The sequence studied is  a part of mitochondrial genome.
Mitochondrial sequences are known to have highly biased
transitions vs. transversions.

The models JC , FEL,  K2P,  REV, REV +   (the inferred shape
parameter  value is =0.28 ) are presented in a flowchart showing
relationships between them. For each model,  the matrix of rates of
substitutions between nucleotides  is represented by a bubble plot
where the area of each bubble indicates the corresponding rate. The
models become more advanced moving down the figure, as illustrated
in the bubble plots by their increasing flexibility in estimating relative
replacement rates and as reflected by increasing log-likelihoods.

For the REV+  model  the reverse-J shape of the graph indicates that
the majority of sites have low rates of evolution, with some sites having
high rates of evolution.

Note how the inferred maximum likelihood phylogeny changes
significantly as the models become more advanced.  (compare JC with
K2P); inferred branch lengths also tend to increase (compare REV to
REV+ ). Arrows show where models are nested within each other; that
is, where the first model is a simpler form of the next. For example, the
JC model is nested within the K2P model (it is a special case arising
when  is fixed equal to 1), but the K2P model is not nested with the
FEL model.
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Assignment 1
By using MEGA5, construct UPGMA, neigbor joining and maximum
parsimony trees. Compare the results.
Compare neighbor joining trees by using p-distance and Jukes-Cantor
model.

Assignment 2
Construct only the neighbor joining tree by using the Jukes-Cantor model

Assignment 3
Construct only the neighbor joinig tree by using the Jukes-Cantor model

Before you start working with your own data, take the tutorial
”Walk through MEGA”

Read also the ”Short tutorial article” in course webpage.
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