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One-dimensional deconvolution will serve as a basic example throughout
Part I of the book. Two-dimensional deconvolution is a project topic in
Section 10.

2.1.1 Continuum model for one-dimensional convolution

We build a computational model for one-dimensional convolution with pe-
riodic boundary conditions. We consider 1-periodic functions f : R → R

satisfying f(x) = f(x + n) with any integer n ∈ Z. Essentially the func-
tion f is defined on an interval of length 1 such as [0, 1] or [−1

2 ,
1
2 ] with the

endpoints identified; another way of thinking about this is to consider f(x)
defined on a circle with radius (2π)−1 and x being the arc length variable.

The reason for considering periodic functions is that we can avoid some
technicalities related to boundary conditions that would obscure the main
message about ill-posedness. Also, the Fourier transform and the wavelet
transform are easily defined and implemented in the periodic setting.

The continuum measurement model concerns a 1-periodic signal f : R →
R blurred by a 1-periodic point spread function (psf) ψ. Other common
names for the point spread function include device function, impulse re-
sponse, blurring kernel, convolution kernel and transfer function.

Let us first construct the psf using a building block ψ0 defined in the
interval [−a, a] ⊂ R with some constant 0 < a < 1/2:

ψ0(x) = Ca(x+ a)2(x− a)2, for − a ≤ x ≤ a, (2.1)

where the constant Ca := (
∫ a
−a(x+a)2(x−a)2dx)−1 is chosen to enforce the

following normalization: ∫ a

−a
ψ0(x) dx = 1. (2.2)

The periodic point spread function is defined by copying ψ0(x) to every
interval [n − a, n + a] with n ∈ Z and setting ψ(x) to zero outside those
intervals. The resulting ψ is a non-negative and even function:

ψ(x) ≥ 0 and ψ(x) = ψ(−x) for all x ∈ R. (2.3)

See Figure 2.1 for a plot of the point spread function with a = 0.04.
We remark that instead of (2.2) one often requires

∫ a
−a ψ0(x)2 dx = 1.

However, we prefer (2.2) since then constant functions remain unchanged in
convolution with ψ; this will be convenient below when we compare plots of
reconstructions to the plot of the true signal by showing them in the same
figure.
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Figure 2.1: Point spread function according to (2.4) with a = 0.04 for one-
dimensional convolution. Left: the continuously differentiable building block
ψ0(x) used for constructing the periodic psf. Right: the periodic psf ψ(x).
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Figure 2.2: Effect of convolution on a piecewise continuous function. Left:
target function f(x). Right: the function (ψ ∗ f)(x).

Definition 2.1.1 The continuum model of convolution, or blurring, is given
by the following integral:

(ψ ∗ f)(x) =
∫ a

−a
ψ(x′)f(x− x′) dx′. (2.4)

Note that formula (2.4) is not of the form (1.1) since the left hand side
is not a k-dimensional vector. However, suppose the function f is defined
on an interval [b, b + 1], and assume that we have a device that measures
the values of the convolution function (ψ ∗ f)(x) at a collection of k equally
spaced points x̃1 = b, x̃2 = b+ 1

k , x̃3 = b+ 2
k , . . . , x̃k = b+ k−1

k and define

m := [(ψ ∗ f)(x̃1), (ψ ∗ f)(x̃2), . . . , (ψ ∗ f)(x̃k)]T ∈ Rk. (2.5)

Then Af = m is of the form (1.1).
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2.1.2 Discrete convolution model

Next we need to discretize the continuum model to arrive at a finite-dimensional
measurement model of the form (1.3). Define

xj = b+
j − 1

n
for j = 1, 2 . . . , n; (2.6)

then the 1-periodic real-valued function f(x) is represented by a vector f

containing values at the grid points:

f = [f1, f2, . . . , fn]
T = [f(x1), f(x2), . . . , f(xn)]

T ∈ Rn. (2.7)

Furthermore, denote ∆x := x2 − x1 = 1/n.
We can approximate the integral appearing in (2.4) by numerical quadra-

ture. For any reasonably well-behaved function g : [b, b+ 1] → R we have

∫ b+1

b
g(x) dx ≈ ∆x

n∑

j=1

g(xj), (2.8)

the approximation becoming better as n increases.
For convenience, let us take k = n and measure the convolution at the

same points (2.6) as where the unknown function f is sampled. This is not
necessary in general, but it will lead to a square-shaped matrix A, making
it easy to illustrate näıve reconstructions and inverse crimes.

Let us construct an n × n matrix A so that Af ∈ Rk approximates Af
defined by (2.4). We define a discrete psf denoted by

p = [p−ν ,p−ν+1, . . . ,p−1,p0,p1, . . . ,pν−1,pν ]
T

as follows. Recall that ψ0(x) ≡ 0 for |x| > a > 0. Take ν > 0 to be the
smallest integer satisfying the inequality (ν + 1)∆x > a and set

p̃j = ψ0(j∆x) for j = −ν, . . . , ν.

For example, with a = 0.04 as in Figure 2.1 and n = 64, we get ν = 2.
By (2.8) the normalization condition (2.2) almost holds: ∆x

∑ν
j=−ν p̃j ≈ 1.

However, in practice it is a good idea to normalize the discrete psf explicitly
by the formula

p =
(
∆x

ν∑

j=−ν

p̃j

)−1
p̃; (2.9)
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then it follows that

∆x
ν∑

j=−ν

pj = 1. (2.10)

Now
∫ a

−a
ψ(x′)f(xj − x′)dx′ ≈ ∆x

ν∑

ℓ=−ν

ψ(xℓ)f(xj − xℓ)

≈ ∆x
ν∑

ℓ=−ν

pℓfj−ℓ.

Hence discrete convolution is defined by the formula

(p ∗ f)j =
ν∑

ℓ=−ν

pℓfj−ℓ, (2.11)

where fj−ℓ is defined using periodic boundary conditions for the cases j−ℓ <
1 and j − ℓ > n. Then

∆x(p ∗ f) ≈ Af, (2.12)

and we define the measurement vector m = [m1, . . .mk]T by

mj = ∆x(p ∗ f)j + εj . (2.13)

We would like to write formula (2.13) using a matrix A so that we would
arrive at the desired model (1.3). To this end, set

⎡

⎢⎣
m1
...

mk

⎤

⎥⎦ =

⎡

⎢⎣
a11 · · · a1n
...

. . .
...

ak1 · · · akn

⎤

⎥⎦

⎡

⎢⎣
f1
...
fn

⎤

⎥⎦+

⎡

⎢⎣
ε1
...
εk

⎤

⎥⎦ .

The answer is to build a circulant matrix having the elements of p appearing
systematically on every row of A.

Let us illustrate the structure of the convolution matrix A by an example
in the case n = 64. As observed above, if a = 0.04 then ν = 2, and the psf
takes the form p = [p−2 p−1 p0 p1 p2]T . According to (2.11) we have

(p ∗ f)1 = p0f1 + p−1f2 + p−2f3 + p2fn−1 + p1fn,

(p ∗ f)2 = p1f1 + p0f2 + p−1f3 + p−2f4 + p2fn,

(p ∗ f)3 = p2f1 + p1f2 + p0f3 + p−1f4 + p−2f5,
...

(p ∗ f)n = p−1f1 + p−2f2 + p2fn−2 + p1fn−1 + p0fn.
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Consequently the matrix A looks like this:

A = ∆x

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0 p−1 p−2 0 0 0 · · · p2 p1

p1 p0 p−1 p−2 0 0 · · · 0 p2

p2 p1 p0 p−1 p−2 0 · · · 0 0
0 p2 p1 p0 p−1 p−2 · · · 0 0
...

. . .
...

. . .

0 0 · · · p2 p1 p0 p−1 p−2

p−2 0 · · · 0 p2 p1 p0 p−1

p−1 p−2 · · · 0 0 p2 p1 p0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (2.14)

note the systematic band-diagonal structure, which characterizes A as a
circulant matrix. Linear systems involving circulant matrices can be quickly
solved using Fast Fourier Transforms, a topic we will return to later.

Returning to the general case of p defined by (2.9), the approximation
formula (2.12) can be written in the form

Af ≈ Af. (2.15)

Figure 2.3 shows data computed by the discrete model Af and compares the
result to the continuous data (ψ ∗ f)(x) defined by (2.4).

Now let’s add a little noise to the data. For example, we might take
k = 64 = n and construct the measurement noise in a probabilistic manner
by taking a realization of a random vector with 64 independently distributed
Gaussian elements having standard deviation σ = 0.01 · max |f(x)|. This
corresponds to a relative noise level of 1%.

2.1.3 Näıve deconvolution and inverse crimes

We illustrate numerically the failure of the following näıve reconstruction
attempt:

f ≈ A−1m ≈ A−1(Af + ε) = f +A−1(ε). (2.16)

In the case of no added noise (ε = 0) we use the data shown in the left plot of
Figure 2.4 and get the left plot in Figure 2.5. The näıve reconstruction seems
perfect! However, there is a catch. This apparently accurate reconstruction
is not to be trusted; it is an example of an inverse crime. We will show how
to avoid inverse crime in Section 2.1.4.

If we apply näıve reconstruction (2.16) to the slightly noisy data shown
in the right plot of Figure 2.4, we get the result shown in the right plot


