CONTINUOUS IMAGES AND THEIR PIXEL APPROXIMATIONS

Samuli Siltanen, November 12, 2014 (Remark: the version of November 5 had errors in formula (1))

1. Continuous images

We let the image domain be the half-open unit square $\Omega = [0, 1)^2 \subset \mathbb{R}^2$. In other words,

$$\Omega = \{ (x, y) \in \mathbb{R}^2 \, | \, 0 \le x < 1, \ 0 \le y < 1 \}.$$

We model a monochrome (black&white) image with a (Lebesgue measurable) function $f: \Omega \to [0, 1]$. Such an f is referred to as *continuous image* because it is defined on the infinite set Ω . The function f need not be continuous, though.

2. Pixel images

Square-shaped pixel images are defined as $n \times n$ matrices with nonnegative real-valued elements smaller or equal to one. Throughout the text we take for simplicity $n = 2^m$ with m > 0.

For each resolution parameter $m = 1, 2, \ldots$ define pixels

(1)
$$\Omega_{k\ell}^{(m)} := \left\{ (x,y) \mid \begin{array}{ccc} (\ell-1)2^{-m} & \leq & x & < & \ell 2^{-m}, \\ 1-k 2^{-m} & \leq & y & < & 1-(k-1)2^{-m} \end{array} \right\}$$

for $1 \le k \le 2^m$ and $1 \le \ell \le 2^m$. See Figure 1. The side of a pixel has length $D_m = 2^{-m}$, and the area of a pixel is

$$|\Omega_{k\ell}^{(m)}| = D_m^2 = 2^{-2m}.$$

Note that for fixed m > 0 the pixels are disjoint:

$$\Omega_{k\ell}^{(m)} \cap \Omega_{k',\ell'}^{(m)} = \emptyset \quad \text{ if } k \neq k' \text{ or } \ell \neq \ell',$$

and they cover the image domain completely:

$$\Omega = \bigcup_{k=1}^{2^m} \bigcup_{\ell=1}^{2^m} \Omega_{k\ell}^{(m)}.$$

Also, any pixel $\Omega_{k\ell}^{(m)}$ is a union of exactly four pixels of the form $\Omega_{ij}^{(m+1)}$.

$f:\Omega\to [0,1]$	a ₁₁	a_{12}	<i>b</i> ₁₁	b ₁₂	b_{13}	b_{14}
			b ₂₁	b ₂₂	b_{23}	b ₂₄
	a ₂₁	a ₂₂	b ₃₁	b ₃₂	b ₃₃	b_{34}
			b_{41}	b_{42}	b_{43}	b_{44}

FIGURE 1. Left: image defined as a function on the half-open square $\Omega = [0, 1)^2$. Middle and right: pixelizations for resolutions $n = 2^1$ and $n = 2^2$, respectively.

Given a continuous monochrome image f, the corresponding pixel image at resolution m > 1 is the $2^m \times 2^m$ matrix $A = [b_{k\ell}]$ with elements

(2)
$$b_{k\ell} := \frac{1}{|\Omega_{k\ell}^{(m)}|} \int_{\Omega_{k\ell}^{(m)}} f(x,y) \, dx \, dy = 2^{2m} \int_{\Omega_{k\ell}^{(m)}} f(x,y) \, dx \, dy.$$

3. Downsampling

Given a continuous image f, we can consider pixelized versions of it at two different resolutions. For the sake of the argument, let $B = [b_{k\ell}]$ be a $2^m \times 2^m$ matrix and $A = [a_{ij}]$ be a $2^{m+1} \times 2^{m+1}$ matrix. Here both the elements $b_{k\ell}$ and the elements a_{ij} are defined using (2) at the appropriate resolutions.

Then it holds that

$$b_{k\ell} = \frac{1}{4} (a_{ij} + a_{i'j'} + a_{i''j''} + a_{i'''j''}),$$

where the indices i, i', i'', i''' and j, j', j'', j''' satisfy

$$\Omega_{k\ell}^{(m)} = \Omega_{ij}^{(m+1)} \bigcup \Omega_{i'j'}^{(m+1)} \bigcup \Omega_{i''j''}^{(m+1)} \bigcup \Omega_{i'''j'''}^{(m+1)}).$$

For example,

$$b_{11} = \frac{1}{4}(a_{11} + a_{21} + a_{12} + a_{22})$$