
Introduction to mathematical physics: Homework set 13
Quantum dynamics Monday 9.12.2013

This is the final Homework set. There will normal lectures on Thu 5.12. and Mon 9.12. and
we will use the lecture on Thu 12.12. for an optional question session where you can ask
about the projects and the course topics.

Exercise 1

Prove Proposition 12.2.5. about the properties of the antisymmetric and symmetric subspaces
H±N of HN :=

⊗N
n=1 h.

Exercise 2

Translation semigroups

Consider N ≥ 2 spinless particles of mass mi > 0, i = 1, 2, . . . , N , and let H := L2((R3)N )

denote the corresponding Hilbert space. A translation by y ∈ R3 on H is defined via the
formula

(τyψ)(x1, . . . ,xN ) := ψ(x1 − y, . . . ,xN − y) , x ∈ (R3)N , ψ ∈ H . (1)

(a) Explain why (1) defines an operator on H. Prove that every τy is unitary.
(b) Show that τyτy′ = τy+y′ for all y,y′ ∈ R3. When do the operators τy and τy′ commute?
(c) Consider some fixed y ∈ R3, and prove that t 7→ τty defines a strongly continuous

unitary semigroup.

Exercises 3

Translation invariant pair potentials

Consider N , mi, H and τy, defined as in the previous Exercise. Assume that each pair
(i′, i), i′ 6= i, of particles interacts via a potential which depends only their separation, as
determined by the function Vi′i ∈ L2(R3) + L∞(R3).

(a) Prove that the resulting Hamiltonian

H := −
N∑
i=1

1

2mi
∇2
xi

+

N∑
i=1

N∑
i′=1;i′ 6=i

Vi′i(xi′ − xi) (2)

is self-adjoint on H := L2((R3)N ) with D(H) = D(H0).
(b) Show that H is translation invariant: τyH ⊂ Hτy, for every y ∈ R3. (Hint: It suffices

to check the translation invariance for test-functions. Explain why.)
(c) Suppose ψ0 ∈ H is given and denote ψt := e−itHψ0 for t > 0. Consider some fixed

y ∈ R3, denote φ0 := τyψ0, and set then φt := e−itHφ0 for t > 0. Show that φt = τyψt

for all t ≥ 0. (Hint: spectral theory.)

(Please turn over)



Exercise 4

Let h be a Hilbert space, and consider the standard Fock space generated by it: define

H0 = C, H1 = h, and HN =
N⊗

n=1
h, for N = 2, 3, . . ., and then set F :=

∞⊕
n=0
HN . Consider

some fixed g ∈ h.

(a) For N ∈ N+ prove that there is a unique continuous linear map aN : HN → HN−1 with

aN
(
⊗N

n=1ψn

)
=
√
N(g, ψ1)h ⊗N

n=2 ψn , for all ψ ∈ hN :=
∏N

n=1 h .

(Hint: Theorem 2.12 and Exercise 2.4. Recall that for any non-zero f ∈ h one can find
an orthonormal basis of h which contains f/‖f‖.)

(b) Show that D0 :=
{

Ψ ∈ F
∣∣∑∞

N=0N‖ΨN‖2 <∞
}
is a dense subspace of F which con-

tains the vacuum vector Ω = (1, 0, 0, . . .).
(c) Prove that the equation (aΨ)N = aN+1ΨN+1, N = 0, 1, . . ., defines an operator D0 →

F , and that this operator is unbounded if g 6= 0. Compute aΩ.
(d) Show that there is a unique continuous linear map cN : HN → HN+1 with

cN
(
⊗N

n=1ψn

)
=
√
N + 1 g ⊗ ψ1 ⊗ · · · ⊗ ψN , for all ψ ∈ hN ,

for any choice of N = 0, 1, . . . . Prove that if we set (cΨ)0 = 0 and (cΨ)N = cN−1ΨN−1,
for N ∈ N+, then c is an operator D0 → F which is unbounded if g 6= 0. Compute cΩ.

a = a(g) is called the annihilation operator related to g on F and c = c(g) is called the
creation operator related to g. Note that order is here important and it would be better to
say that the operators annihilate and create a particle with the label “1”.

Exercise 5

Consider the fermionic Fock space defined in 12.2.6: F (−) =
⊕∞

N=0H
(−)
N , where H(−)

N is the
totally antisymmetric subspace of HN . As before, let P (−)

N denote the orthogonal projection
onto H(−)

N , and consider some fixed g ∈ h. The following statements show that the fermionic
creation and annihilation operators, defined by restricting a(g) and c(g) to F (−), are actually
bounded operators.

(a) Show that the formulae (P (−)Ψ)0 := Ψ0, (P (−)Ψ)N := P
(−)
N ΨN , for N ∈ N+, define an

orthogonal projection P (−) : F → F onto F (−).
(b) Prove that D− := D0 ∩F (−) is a dense subspace of F (−), and consider the restrictions

of a(g) and c(g) to F (−), i.e., the maps ã := P (−)a(g)|D− and c̃ := P (−)c(g)|D− . Show
that there are unique a−(g), c−(g) ∈ B(F (−)) such that a−(g)|D− = ã, c−(g)|D− = c̃,
and that then ‖a−(g)‖ = ‖g‖h = ‖c−(g)‖. (Hint: What happens to P (−)

N (⊗N
n=1ψn

)
, if

ψi = ψj for some i 6= j?)
(c) Show that c−(g) is the adjoint of a−(g). (In this context, usually denoted by a∗−(g).)


