Introduction to mathematical physics: Homework set 11
Quantum dynamics Monday 25.11.2013

Exercise 1

Proof of Proposition 10.3

Let d < 3, and consider Hy = —%Vg on L?(R%). Prove that every ¢ € D(Hy) can be chosen
continuous. Show that for any ¢ > 0 there is ¢. > 0 such that for all ¢ € D(Hy),

sup [P(2)] = [[Y]lec < el[Hot|| + el - (1)
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(Hint: Recall the Riemann-Lebesgue lemma; in particular, note that by applying Remark “a)”
on p. 73 of the lecture notes to the inverse Fourier transform one clearly has |||l < || F¥|l1
for all 9p € L2. Show then that the assumptions imply F¢ € L'(R%), and try to prove the
inequality (1) for some constants. After this, consider the functions f,., with » > 0, defined

via their Fourier transforms (Ff,.)(k) := r&(Fy)(rk), for k € R%.)

Exercise 2

Let d = 1, and consider Hy = —3V? on L?(R). By Exercise 1 every element of D(Hy) is

then a continuous function. However, they are even more regular:

(a) Show that, if v € D(Hy), then ¢y € CV(R) and with ¢ := Hyy we have for all z, 79 € R

wla) = lao) + o = 200/ (w0) =2 [ dy(o—9)olw). 2
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(b) Conversely, show that, if ¢» € C)(R) is such that 1,7’ € L?(R) and there are some
7o € R and ¢ € L?(R) such that (2) holds for almost every z € R, then ¢ € D(H,)
and ¢ = Hy.

(Hint: Recall that —2Hy = 0,,0,, and use Exercise 10.3.)

Exercise 3

Let d = 1 and consider a real potential V' € L*(R) which is piecewise continuous: it is
continuous apart from some isolated points in Z C R. By Theorem 104, H = Hy + V is
self-adjoint on D(Hy).

(a) Suppose A € R is an eigenvalue of H with an eigenvector 1, that is, assume ¢ € D(H)
and HvY = M. Show that then between any two consecutive points of discontinuity
of V' (that is, on any open interval in R\ Z) ¢ is twice continuously differentiable
and satisfies the ordinary differential equation —1v"(z) + V(2)¢(z) = Ap(z). (Hint:
Exercise 2.)

(b) State also the converse: Suppose A € R and ¢ : R — C satisfies — 3" (z) +V (z)¢(z) =
Ap(x) on any open interval on which V is continuous (in particular, ¢”(x) exists at
every point of such intervals). What do you still need to check so that 1 is an eigenvector

of H? Is it possible that the corresponding eigenvalue is not A?

(Please turn over)



Exercise 4

Continuation from Exercise 3. ..

Consider H in the special case V(z) = —Epl(|z] < a) where a,Ey > 0 are some given

parameters. (This setup is called a one-dimensional potential well.)

Assume A is an eigenvalue of H, and find explicitly all of the corresponding eigenvectors.
What is the dimension of the eigenspace? Derive also an implicit formula satisfied by any

eigenvalue of H. Does H have eigenvalues for all a, Fy > 07

Exercise 5

Free Schrédinger operator on (0,1)

In analogy to Exercise 10.5, define an operator T' on H := L*(Q2) with Q := (0,1) by using
the domain

D(T) = {y € H|3f € D(Hy) such that f|qg =9},

and setting T := Hy f|q for ¢ € D(T). Show that the definition makes sense: T% does not
depend on the choice of f.

For each of the domains D listed below, consider the restriction A := T'|p of T on D. Show

that every such A is a symmetric densely defined operator.

(a) (Dirichlet boundary conditions)
D = {¢ € D(T)]4(0) =0, y(1) = 0} .
(b) (Mixed Dirichlet and Neumann) There is o € R such that
D ={y € D(T)[4'(0) = ay(0), (1) =0}, or
D = {y € D(T)|%(0) =0, ¥'(1) = ap(1)} .
(c) (General Neumann) There are a, 3 € R such that
D = {4 € D(T) |4/ (0) = arp(0), ¥'(1) = By (1)} .

(d) (Generalized periodic) There are ¢ € R and a 2 x 2 matrix M, such that M;; € R,
1,7 =1,2 and det M = 1, and we define

p={venm) (f(%) e (f%) 2

(All of these operators are actually self-adjoint. In fact, they yield the full collection of self-
adjoint extensions in L?(Q) of the operator f — — f” with the domain C2°(2). Therefore,
they are all candidates for a possible definition of the generator of “free” evolution on (0, 1).

Hint: try first to figure out why T is not self-adjoint.)



