Introduction to mathematical physics: Quantum dynamics

Homework set 11 Monday 25.11.2013

Exercise 1

Proof of Proposition 10.3

Let $d \leq 3$, and consider $H_0 = -\frac{1}{2}\nabla^2$ on $L^2(\mathbb{R}^d)$. Prove that every $\psi \in D(H_0)$ can be chosen continuous. Show that for any $\varepsilon > 0$ there is $c_{\varepsilon} \geq 0$ such that for all $\psi \in D(H_0)$,

$$\sup_{x \in \mathbb{R}^d} |\psi(x)| = \|\psi\|_{\infty} \le \varepsilon \|H_0\psi\| + c_{\varepsilon}\|\psi\|.$$
(1)

(Hint: Recall the Riemann-Lebesgue lemma; in particular, note that by applying Remark "a)" on p. 73 of the lecture notes to the inverse Fourier transform one clearly has $\|\psi\|_{\infty} \leq \|\mathcal{F}\psi\|_1$ for all $\psi \in L^2$. Show then that the assumptions imply $\mathcal{F}\psi \in L^1(\mathbb{R}^d)$, and try to prove the inequality (1) for some constants. After this, consider the functions f_r , with r > 0, defined via their Fourier transforms $(\mathcal{F}f_r)(k) := r^d(\mathcal{F}\psi)(rk)$, for $k \in \mathbb{R}^d$.)

Exercise 2

Let d = 1, and consider $H_0 = -\frac{1}{2}\nabla^2$ on $L^2(\mathbb{R})$. By Exercise 1 every element of $D(H_0)$ is then a continuous function. However, they are even more regular:

(a) Show that, if $\psi \in D(H_0)$, then $\psi \in C^{(1)}(\mathbb{R})$ and with $\phi := H_0 \psi$ we have for all $x, x_0 \in \mathbb{R}$

$$\psi(x) = \psi(x_0) + (x - x_0)\psi'(x_0) - 2\int_{x_0}^x \mathrm{d}y \,(x - y)\phi(y)\,. \tag{2}$$

(b) Conversely, show that, if $\psi \in C^{(1)}(\mathbb{R})$ is such that $\psi, \psi' \in L^2(\mathbb{R})$ and there are some $x_0 \in \mathbb{R}$ and $\phi \in L^2(\mathbb{R})$ such that (2) holds for almost every $x \in \mathbb{R}$, then $\psi \in D(H_0)$ and $\phi = H_0 \psi$.

(Hint: Recall that $-2H_0 = \partial_x \partial_x$ and use Exercise 10.3.)

Exercise 3

Let d = 1 and consider a real potential $V \in L^{\infty}(\mathbb{R})$ which is piecewise continuous: it is continuous apart from some isolated points in $Z \subset \mathbb{R}$. By Theorem 10.4, $H = H_0 + V$ is self-adjoint on $D(H_0)$.

- (a) Suppose $\lambda \in \mathbb{R}$ is an eigenvalue of H with an eigenvector ψ , that is, assume $\psi \in D(H)$ and $H\psi = \lambda\psi$. Show that then between any two consecutive points of discontinuity of V (that is, on any open interval in $\mathbb{R} \setminus Z$) ψ is twice continuously differentiable and satisfies the ordinary differential equation $-\frac{1}{2}\psi''(x) + V(x)\psi(x) = \lambda\psi(x)$. (Hint: Exercise 2.)
- (b) State also the converse: Suppose $\lambda \in \mathbb{R}$ and $\psi : \mathbb{R} \to \mathbb{C}$ satisfies $-\frac{1}{2}\psi''(x) + V(x)\psi(x) = \lambda\psi(x)$ on any open interval on which V is continuous (in particular, $\psi''(x)$ exists at every point of such intervals). What do you still need to check so that ψ is an eigenvector of H? Is it possible that the corresponding eigenvalue is not λ ?

(Please turn over)

Exercise 4

Continuation from Exercise 3...

Consider H in the special case $V(x) = -E_0 \mathbb{1}(|x| < a)$ where $a, E_0 > 0$ are some given parameters. (This setup is called a one-dimensional *potential well*.)

Assume λ is an eigenvalue of H, and find explicitly all of the corresponding eigenvectors. What is the dimension of the eigenspace? Derive also an implicit formula satisfied by any eigenvalue of H. Does H have eigenvalues for all $a, E_0 > 0$?

Exercise 5

Free Schrödinger operator on (0, 1)

In analogy to Exercise 10.5, define an operator T on $\mathcal{H} := L^2(\Omega)$ with $\Omega := (0, 1)$ by using the domain

$$D(T) = \{ \psi \in \mathcal{H} \mid \exists f \in D(H_0) \text{ such that } f \mid_{\Omega} = \psi \}$$

and setting $T\psi := H_0 f|_{\Omega}$ for $\psi \in D(T)$. Show that the definition makes sense: $T\psi$ does not depend on the choice of f.

For each of the domains D listed below, consider the restriction $A := T|_D$ of T on D. Show that every such A is a symmetric densely defined operator.

(a) (Dirichlet boundary conditions)

$$D = \{ \psi \in D(T) \, | \, \psi(0) = 0, \, \psi(1) = 0 \} \; .$$

(b) (Mixed Dirichlet and Neumann) There is $\alpha \in \mathbb{R}$ such that

$$D = \{ \psi \in D(T) \mid \psi'(0) = \alpha \psi(0), \ \psi(1) = 0 \}, \text{ or}$$
$$D = \{ \psi \in D(T) \mid \psi(0) = 0, \ \psi'(1) = \alpha \psi(1) \}.$$

(c) (General Neumann) There are $\alpha, \beta \in \mathbb{R}$ such that

$$D = \{ \psi \in D(T) \, | \, \psi'(0) = \alpha \psi(0), \, \psi'(1) = \beta \psi(1) \} \; .$$

(d) (Generalized periodic) There are $\varphi \in \mathbb{R}$ and a 2 × 2 matrix M, such that $M_{ij} \in \mathbb{R}$, i, j = 1, 2 and det M = 1, and we define

$$D = \left\{ \psi \in D(T) \middle| \begin{pmatrix} \psi(1) \\ \psi'(1) \end{pmatrix} = e^{i\varphi} M \begin{pmatrix} \psi(0) \\ \psi'(0) \end{pmatrix} \right\}$$

.

(All of these operators are actually self-adjoint. In fact, they yield the full collection of selfadjoint extensions in $L^2(\Omega)$ of the operator $f \mapsto -f''$ with the domain $C_c^{\infty}(\Omega)$. Therefore, they are all candidates for a possible definition of the generator of "free" evolution on (0, 1). Hint: try first to figure out why T is *not* self-adjoint.)