Introduction to mathematical physics: Quantum dynamics

Homework set 10 Monday 18.11.2013

Exercise 1

Assume $V : \mathbb{R}^d \to \mathbb{R}$ is Lebesgue measurable. By Exercise 5.1, the multiplication operator M_V is then self-adjoint on $L^2(\mathbb{R}^d)$. Let \mathcal{C} denote the Cayley transform of M_V . Show that \mathcal{C} is a multiplication operator, that is, find a Lebesgue measurable function $F : \mathbb{R}^d \to \mathbb{C}$ such that $\mathcal{C} = M_F$. Check by explicit computation that |F(x)| = 1 for (almost) all $x \in \mathbb{R}^d$ and use this to conclude that \mathcal{C} is unitary.

Exercise 2

"C-real" symmetric operators have self-adjoint extensions

A map $C: \mathcal{H} \to \mathcal{H}$ is called a *conjugation* if C is *conjugate linear*, it *swaps scalar products*, and $C^2 = 1$. (In other words, we assume $C(\alpha\psi) = \alpha^*C\psi$, $C(\psi + \phi) = C\psi + C\phi$, $(C\psi, C\phi) = (\phi, \psi)$, and $C(C\psi) = \psi$ for all $\alpha \in \mathbb{C}$, $\psi, \phi \in \mathcal{H}$.) For instance, $(C\psi)(x) = \psi(x)^*$ defines a conjugation on $L^2(\mathbb{R}^d)$.

Given a conjugation C, an operator S on \mathcal{H} is called C-real if it commutes with C in the following precise sense: $CD(S) \subset D(S)$ and $SC\psi = CS\psi$ for all $\psi \in D(S)$.

Show that, if C is a conjugation and S is a symmetric operator which is C-real, then S has self-adjoint extensions. (Hint: Consider what happens to orthonormal sets in the deficiency spaces.)

(Please turn over)

Exercise 3

(a) Suppose $\psi \in L^2(\mathbb{R})$ is " L^2 -differentiable", that is, $\psi \in D(\partial)$. Let $\phi = \partial \psi$. Show that ψ can be chosen as a continuous function on \mathbb{R} , and that then for all $x', x \in \mathbb{R}$,

$$\psi(x') - \psi(x) = \int_x^{x'} \mathrm{d}y \,\phi(y) \,. \tag{1}$$

(The above integral notation means a directed integral from x to x': if $x \leq x'$, we have $\int_x^{x'} dy = \int_{[x,x']} dy$, and if x' < x, then $\int_x^{x'} dy = -\int_{[x',x]} dy$. Hint: Using Hölder's inequality, show first that $\mathcal{F}\psi \in L^1(\mathbb{R})$. This implies that ψ is continuous. Recall that by Proposition 6.6.4 we have now $(f',\psi) = -(f,\phi)$ for any Schwartz function f. Consider then the integral $\int_{\mathbb{R}} dx f(x)^*(\psi(x+a) - \psi(x))$ for an arbitrary compactly supported test function f and any a > 0 and use continuity in x.)

(b) Prove also the converse: if $x \in \mathbb{R}$ and $\phi, \psi \in L^2(\mathbb{R})$ are such that (1) holds for almost every $x' \in \mathbb{R}$, then $\psi \in D(\partial)$ and $\phi = \partial \psi$. (Hint: Study $(f', \psi) + (f, \phi)$ for an arbitrary Schwartz function f.)

You will need these results later; if you get stuck, assume them to be proven and continue with the following exercises.

Exercise 4

Consider the interval $\Omega := (0,1) \subset \mathbb{R}$. Set $D_c := C_c^{\infty}(\Omega)$ and $\mathcal{H} := L^2(\Omega)$, and define $(S\psi)(x) := -i\psi'(x)$ for $\psi \in D_c$.

- (a) Show that S is a densely defined symmetric operator on \mathcal{H} .
- (b) Hence, S is closable and let \bar{S} denote its closure. For any $\psi \in \mathcal{H}$ let $f_{\psi} \in L^2(\mathbb{R})$ denote its null extension to the whole of \mathbb{R} : set $f_{\psi}(x) = \psi(x)$ for $x \in \Omega$ and $f_{\psi}(x) = 0$ otherwise. Show that $D(\bar{S}) = \{\psi \in \mathcal{H} \mid f_{\psi} \in D(\partial)\}$ and $\bar{S}\psi = -i\partial f_{\psi}|_{\Omega}$ for all $\psi \in D(\bar{S})$.

(Hint: Exercise 3. It is probably better not to use Cayley transforms here.)

Exercise 5

Continuation from Exercise 4...

Show that S is not essentially self-adjoint but it has self-adjoint extensions. Derive the following parameterization of the extensions: to each $\varphi \in [0, 2\pi)$ there corresponds a self-adjoint operator A_{φ} such that $S \subset A_{\varphi}$,

$$D(A_{\varphi}) = \left\{ \psi \in \mathcal{H} \, \big| \, \exists f \in D(\partial) \text{ such that } f|_{\Omega} = \psi \text{ and } f(1) = \mathrm{e}^{\mathrm{i}\varphi} f(0) \right\}, \tag{2}$$

and for any such f we have $A_{\varphi}\psi = -i\partial f|_{\Omega}$. Can you guess what is the unitary semigroup generated by A_{φ} on \mathcal{H} ? (No need to try to prove your guess.)

(Note that by Exercise 3, if $f \in D(\partial)$, it makes sense to talk about "f(x)" for a fixed x. Hint: Cayley transform. Note that if $f \in D(\partial)$ is such that $f|_{\Omega}$ belongs to one of the deficiency spaces, you can easily conclude that f must satisfy an ordinary differential equation on Ω . Solve the equation.)