
Introduction to mathematical physics: Homework set 10
Quantum dynamics Monday 18.11.2013

Exercise 1

Assume V : Rd → R is Lebesgue measurable. By Exercise 5.1, the multiplication operator
MV is then self-adjoint on L2(Rd). Let C denote the Cayley transform of MV . Show that C
is a multiplication operator, that is, find a Lebesgue measurable function F : Rd → C such
that C = MF . Check by explicit computation that |F (x)| = 1 for (almost) all x ∈ Rd and
use this to conclude that C is unitary.

Exercise 2

“C-real” symmetric operators have self-adjoint extensions

A map C : H → H is called a conjugation if C is conjugate linear , it swaps scalar products,
and C2 = 1. (In other words, we assume C(αψ) = α∗Cψ, C(ψ+φ) = Cψ+Cφ, (Cψ,Cφ) =

(φ, ψ), and C(Cψ) = ψ for all α ∈ C, ψ, φ ∈ H.) For instance, (Cψ)(x) = ψ(x)∗ defines a
conjugation on L2(Rd).

Given a conjugation C, an operator S on H is called C-real if it commutes with C in the
following precise sense: CD(S) ⊂ D(S) and SCψ = CSψ for all ψ ∈ D(S).

Show that, if C is a conjugation and S is a symmetric operator which is C-real, then S has
self-adjoint extensions. (Hint: Consider what happens to orthonormal sets in the deficiency
spaces.)

(Please turn over)



Exercise 3

(a) Suppose ψ ∈ L2(R) is “L2-differentiable”, that is, ψ ∈ D(∂). Let φ = ∂ψ. Show that ψ
can be chosen as a continuous function on R, and that then for all x′, x ∈ R,

ψ(x′)− ψ(x) =

∫ x′

x

dy φ(y) . (1)

(The above integral notation means a directed integral from x to x′: if x ≤ x′, we
have

∫ x′

x
dy =

∫
[x,x′]

dy, and if x′ < x, then
∫ x′

x
dy = −

∫
[x′,x]

dy. Hint: Using Hölder’s
inequality, show first that Fψ ∈ L1(R). This implies that ψ is continuous. Recall
that by Proposition 6.6.4 we have now (f ′, ψ) = −(f, φ) for any Schwartz function
f . Consider then the integral

∫
Rdxf(x)∗(ψ(x+ a)− ψ(x)) for an arbitrary compactly

supported test function f and any a > 0 and use continuity in x.)
(b) Prove also the converse: if x ∈ R and φ, ψ ∈ L2(R) are such that (1) holds for almost

every x′ ∈ R, then ψ ∈ D(∂) and φ = ∂ψ. (Hint: Study (f ′, ψ) + (f, φ) for an arbitrary
Schwartz function f .)

You will need these results later; if you get stuck, assume them to be proven and continue
with the following exercises.

Exercise 4

Consider the interval Ω := (0, 1) ⊂ R. Set Dc := C∞c (Ω) and H := L2(Ω), and define
(Sψ)(x) := −iψ′(x) for ψ ∈ Dc.

(a) Show that S is a densely defined symmetric operator on H.
(b) Hence, S is closable and let S̄ denote its closure. For any ψ ∈ H let fψ ∈ L2(R) denote

its null extension to the whole of R: set fψ(x) = ψ(x) for x ∈ Ω and fψ(x) = 0 otherwise.
Show that D(S̄) = {ψ ∈ H | fψ ∈ D(∂)} and S̄ψ = −i∂fψ|Ω for all ψ ∈ D(S̄).

(Hint: Exercise 3. It is probably better not to use Cayley transforms here.)

Exercise 5

Continuation from Exercise 4. . .

Show that S is not essentially self-adjoint but it has self-adjoint extensions. Derive the
following parameterization of the extensions: to each ϕ ∈ [0, 2π) there corresponds a self-
adjoint operator Aϕ such that S ⊂ Aϕ,

D(Aϕ) =
{
ψ ∈ H

∣∣∃f ∈ D(∂) such that f |Ω = ψ and f(1) = eiϕf(0)
}
, (2)

and for any such f we have Aϕψ = −i∂f |Ω. Can you guess what is the unitary semigroup
generated by Aϕ on H? (No need to try to prove your guess.)

(Note that by Exercise 3, if f ∈ D(∂), it makes sense to talk about “f(x)” for a fixed x. Hint:
Cayley transform. Note that if f ∈ D(∂) is such that f |Ω belongs to one of the deficiency
spaces, you can easily conclude that f must satisfy an ordinary differential equation on Ω.
Solve the equation.)


