Exercise 1

Consider N particles without spin, labelled n = 1, 2, ..., N, such that particle n has a mass $m_n > 0$. Their state is thus described by a wave function $\psi(t) \in L^2((\mathbb{R}^3)^N)$ (which is isomorphic both to $\bigotimes_{n=1}^N L^2(\mathbb{R}^3)$ and to $L^2(\mathbb{R}^{3N})$). If the particles do not interact, the time evolution is determined by using as the infinitesimal generator the self-adjoint operator

$$-\sum_{n=1}^{N} \frac{1}{2m_n} \sum_{j=1}^{3} \partial_{x_n^j}^2,$$

where x_n^j denotes the j:th coordinate of particle n.

Suppose that the initial data is given by a Schwartz function, and write down a representation of $\psi(x,t)$ analogous to Proposition 6.7.3:a. (Hint: scaling.)

Exercise 2

Let $\psi(t)$ denote the solution to the free evolution in $L^2(\mathbb{R}^d)$ with initial data given by a Schwartz function ψ_0 : assume $\psi_0 \in \mathcal{S}_d$ and define for $t \geq 0$

$$\psi(t) = e^{-itH_0}\psi_0, \quad \text{with} \quad H_0 = -\frac{1}{2}\nabla^2.$$
 (1)

Show that there is C > 0 such that for any $t \in \mathbb{R}$,

$$\|\psi(t)\|_{\infty} \le C\langle t \rangle^{-d/2} \max(\|\psi_0\|_1, \|\widehat{\psi}_0\|_1),$$

where $\langle t \rangle = \sqrt{1+t^2}$, $\|\cdot\|_p$ denotes the $L^p(\mathbb{R}^d)$ -norm for $p=1,\infty$, and $\widehat{\psi}_0$ denotes the Fourier transform of ψ_0 . What does this imply about the probability of finding the particle at a ball of fixed radius, centered at the origin?

Exercise 3

Free evolution of a Gaussian wave packet

For some given $\sigma > 0$ and $v_0 \in \mathbb{R}^d$, define

$$\psi_0(x) = \frac{1}{(2\pi\sigma^2)^{d/4}} e^{ix \cdot v_0} e^{-\frac{1}{4\sigma^2}x^2}.$$

Let $\psi(t)$ be given by the free evolution using ψ_0 as initial data: $\psi(t) = e^{-itH_0}\psi_0$.

Compute $\psi(x,t)$ and $P(x,t) = |\psi(x,t)|^2$ explicitly. What can you say about the $t \to \infty$ asymptotics of the mean and standard deviation of the probability density P(x,t)? (Hint: Exercise 7.5.)

(Please turn over)

Exercise 4

Let $\psi(t)$ and ψ_0 be given as in Exercise 2. Define K(x,t) as in Exercise 7.5, denote $\widehat{\psi}_0 = \mathcal{F}\psi_0$, and set

$$\psi_{\mathrm{as}}(x,t) = K(x,t)\,\widehat{\psi}_0\Big(\frac{x}{2\pi t}\Big) = \Big(\frac{1}{\sqrt{\mathrm{i}2\pi t}}\Big)^d \mathrm{e}^{\mathrm{i}\frac{1}{2t}x^2}\widehat{\psi}_0\Big(\frac{x}{2\pi t}\Big), \qquad x \in \mathbb{R}^d, \ t > 0 \ .$$

Clearly, $\psi_{\rm as}(t) = \psi_{\rm as}(\cdot, t)$ belongs to $L^2(\mathbb{R}^d)$ for all t. Show that

$$\lim_{t \to \infty} \|\psi(t) - \psi_{as}(t)\| = 0.$$

(Hint: Parseval formula.)

Exercise 5

Let $\psi(t)$ and ψ_0 be given as in Exercise 2. Suppose $\Omega \subset \mathbb{R}^d$ is Lebesgue measurable and consider the probabilities p(t) that the particle can be found in the set $t\Omega = \{tx \mid x \in \Omega\}$ at time t > 0. Show that

$$\lim_{t \to \infty} p(t) = \int_{\Omega} dv \, \frac{1}{(2\pi)^d} \left| \widehat{\psi}_0 \left(\frac{v}{2\pi} \right) \right|^2.$$

Compare this to what would happen to a classical freely moving particle which starts at $x_0 \in \mathbb{R}^d$ with a random velocity v which is distributed according to a probability measure $dv P_0(v)$. (The trajectory of the particle for a fixed v is then given by $x(t) = x_0 + vt$.)

Remark: This allows to interpret $dk|\widehat{\psi}_0(k)|^2$ as the probability measure for the (initial) velocity $v=2\pi k$ of the particle. However, this depends on our chosen units in which $\hbar=1=m$. In SI units, the velocity would depend on k by $v=\frac{\hbar k}{m}$, which implies that in general $\hbar k$, \hbar being the Planck constant, is associated with the momentum p=mv of the particle. (This follows from the above results by substituting $t\mapsto \frac{\hbar}{m}t$ in (1).)