Introduction to mathematical physics:

Exercise 1

Every $\phi, \psi \in \mathcal{H}$ satisfies a polarization identity:

$$
(\phi, \psi)=\frac{1}{4}\left(\|\phi+\psi\|^{2}-\|\phi-\psi\|^{2}-\mathrm{i}\|\phi+\mathrm{i} \psi\|^{2}+\mathrm{i}\|\phi-\mathrm{i} \psi\|^{2}\right)
$$

The identity can be generalized to include an action with a bounded operator: for all $\phi, \psi \in \mathcal{H}$ and $A \in \mathcal{B}(\mathcal{H})$

$$
\begin{equation*}
(\phi, A \psi)=\frac{1}{4} \sum_{n=0}^{3} \mathrm{i}^{-n}\left(\phi+\mathrm{i}^{n} \psi, A\left(\phi+\mathrm{i}^{n} \psi\right)\right) . \tag{1}
\end{equation*}
$$

(The polarization identity clearly corresponds to the case $A=1$.)
(a) Prove the generalized polarization identity in (1).
(b) Suppose $T \in \mathcal{B}(\mathcal{H})$. Show that, if $(\psi, T \psi)=0$ for all $\psi \in \mathcal{H}$, then $T=0$. (This implies that the "expectation values" of T determine T uniquely.)
(c) An operator $T: D \rightarrow \mathcal{H}$ is called positive if $(\psi, T \psi) \geq 0$ for all $\psi \in D$. Prove that, if $T \in \mathcal{B}(\mathcal{H})$ is positive, then it is self-adjoint.

Exercise 2

Let $M \subset \mathcal{H}$ be a subspace. Show that $\left(M^{\perp}\right)^{\perp}=\bar{M}$.

Exercise 3

Let $T, S \in \mathcal{B}(\mathcal{H})$, and $\alpha \in \mathbb{C}$ be arbitrary. Show that all of the following statements hold for the related adjoint operators.
(a) $(T+S)^{*}=T^{*}+S^{*}$
(b) $(\alpha T)^{*}=\alpha^{*} T^{*}$
(c) $(S T)^{*}=T^{*} S^{*}$ (notation: $\left.S T=S \circ T\right)$
(d) $T^{* *}=T$ (notation: $\left.T^{* *}=\left(T^{*}\right)^{*}\right)$
(e) $\left\|T^{*} T\right\|=\|T\|^{2}$

This proves that "*" is an involution on $\mathcal{B}(\mathcal{H})$ which makes it into a C^{*}-algebra.

Exercise 4

Suppose $U \in \mathcal{B}(\mathcal{H})$. Show that the following statements are equivalent:
(a) U is a unitary operator: $U^{*} U=1=U U^{*}$.
(b) $R(U)=\mathcal{H}$ and $(U \psi, U \phi)=(\psi, \phi)$ for all $\psi, \phi \in \mathcal{H}$.
(c) $\quad R(U)=\mathcal{H}$ and $\|U \psi\|=\|\psi\|$ for all $\psi \in \mathcal{H}$.

Exercise 5

Two Hilbert spaces $\mathcal{H}_{1}, \mathcal{H}_{2}$ are said to be isomorphic, if there exists a unitary map between them (a map is unitary if it is linear, invertible, and preserves the scalar product). We denote this by $\mathcal{H}_{1} \cong \mathcal{H}_{2}$. Show that
(a) $L^{2}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{2} \cong L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{2}\right) \cong L^{2}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right)$. (Here $L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{2}\right)$ denotes the L^{2} space of two-component wavefunctions, $\psi: \mathbb{R}^{3} \rightarrow \mathbb{C}^{2}$, with a scalar product $(\phi, \psi)=$ $\left.\int \mathrm{d} x \sum_{i=1}^{2} \phi_{i}(x)^{*} \psi_{i}(x).\right)$
(b) $L^{2}\left([0,1]^{d}\right) \otimes L^{2}\left([0,1]^{d^{\prime}}\right) \cong L^{2}\left([0,1]^{d+d^{\prime}}\right)$ for any $d, d^{\prime} \in \mathbb{N}_{+}$. (Hint: Fourier series.)

