Introduction to mathematical physics: Quantum dynamics

Homework set 3 Monday 23.9.2013

Exercise 1

Every $\phi, \psi \in \mathcal{H}$ satisfies a *polarization identity*:

$$(\phi, \psi) = \frac{1}{4} \left(\|\phi + \psi\|^2 - \|\phi - \psi\|^2 - i\|\phi + i\psi\|^2 + i\|\phi - i\psi\|^2 \right) \,.$$

The identity can be generalized to include an action with a bounded operator: for all $\phi, \psi \in \mathcal{H}$ and $A \in \mathcal{B}(\mathcal{H})$

$$(\phi, A\psi) = \frac{1}{4} \sum_{n=0}^{3} i^{-n} (\phi + i^{n} \psi, A(\phi + i^{n} \psi)).$$
(1)

(The polarization identity clearly corresponds to the case A = 1.)

- (a) Prove the generalized polarization identity in (1).
- (b) Suppose $T \in \mathcal{B}(\mathcal{H})$. Show that, if $(\psi, T\psi) = 0$ for all $\psi \in \mathcal{H}$, then T = 0. (This implies that the "expectation values" of T determine T uniquely.)
- (c) An operator $T: D \to \mathcal{H}$ is called *positive* if $(\psi, T\psi) \ge 0$ for all $\psi \in D$. Prove that, if $T \in \mathcal{B}(\mathcal{H})$ is positive, then it is self-adjoint.

Exercise 2

Let $M \subset \mathcal{H}$ be a subspace. Show that $(M^{\perp})^{\perp} = \overline{M}$.

Exercise 3

Let $T, S \in \mathcal{B}(\mathcal{H})$, and $\alpha \in \mathbb{C}$ be arbitrary. Show that all of the following statements hold for the related adjoint operators.

- (a) $(T+S)^* = T^* + S^*$
- (b) $(\alpha T)^* = \alpha^* T^*$
- (c) $(ST)^* = T^*S^*$ (notation: $ST = S \circ T$)
- (d) $T^{**} = T$ (notation: $T^{**} = (T^*)^*$)
- (e) $||T^*T|| = ||T||^2$

This proves that "*" is an involution on $\mathcal{B}(\mathcal{H})$ which makes it into a C^* -algebra.

Exercise 4

Suppose $U \in \mathcal{B}(\mathcal{H})$. Show that the following statements are equivalent:

- (a) U is a unitary operator: $U^*U = 1 = UU^*$.
- (b) $R(U) = \mathcal{H}$ and $(U\psi, U\phi) = (\psi, \phi)$ for all $\psi, \phi \in \mathcal{H}$.
- (c) $R(U) = \mathcal{H}$ and $||U\psi|| = ||\psi||$ for all $\psi \in \mathcal{H}$.

Exercise 5

Two Hilbert spaces \mathcal{H}_1 , \mathcal{H}_2 are said to be isomorphic, if there exists a *unitary map* between them (a map is unitary if it is linear, invertible, and preserves the scalar product). We denote this by $\mathcal{H}_1 \cong \mathcal{H}_2$. Show that

- (a) $L^2(\mathbb{R}^3) \otimes \mathbb{C}^2 \cong L^2(\mathbb{R}^3, \mathbb{C}^2) \cong L^2(\mathbb{R}^3) \oplus L^2(\mathbb{R}^3)$. (Here $L^2(\mathbb{R}^3, \mathbb{C}^2)$ denotes the L^2 space of two-component wavefunctions, $\psi : \mathbb{R}^3 \to \mathbb{C}^2$, with a scalar product $(\phi, \psi) =$ (b) $L^2([0,1]^d) \otimes L^2([0,1]^{d'}) \cong L^2([0,1]^{d+d'})$ for any $d, d' \in \mathbb{N}_+$. (Hint: Fourier series.)