Introduction to mathematical physics:
 Homework set 1
 Quantum dynamics

These exercises are meant to recall basic properties of matrices and positive measures. Note that the exercise session is already on next Monday.

Exercise 1

Let $M \in \mathbb{C}^{d \times d}$ be a complex matrix, with $d \in \mathbb{N}_{+}$given. Show that the sum in

$$
\mathrm{e}^{M}:=\sum_{n=0}^{\infty} \frac{1}{n!} M^{n}
$$

is absolutely convergent and its matrix norm satisfies $\left\|\mathrm{e}^{M}\right\| \leq \mathrm{e}^{\|M\|}$. (Reminder: $M^{0}=1$ in such sums and the matrix norm satisfies $\|A B\| \leq\|A\|\|B\|$ for any square matrices A and B.)

Exercise 2

Suppose that $M \in \mathbb{C}^{d \times d}$ is diagonalizable: there exists an invertible matrix $A \in \mathbb{C}^{d \times d}$ such that $\Lambda:=A^{-1} M A$ is a diagonal matrix (i.e., $\Lambda_{i j}=0$ if $i \neq j$). For every $t \in \mathbb{R}$ define a diagonal matrix $D_{t} \in \mathbb{C}^{d \times d}$ by setting $\left(D_{t}\right)_{i i}:=\mathrm{e}^{t \Lambda_{i i}}$, for $i=1,2, \ldots, d$. Set then $E_{t}:=A D_{t} A^{-1}$ for $t \in \mathbb{R}$.
Prove that $E_{t}=\mathrm{e}^{t M}$. (Hence, the two definitions of "matrix exponentiation" agree with each other.)

Exercise 3

Assume M and $E_{t}, t \in \mathbb{R}$, are given as in Exercise 2. Show that at any "time" $t \in \mathbb{R}$ and for any "initial data" $\psi \in \mathbb{C}^{d}$, we have

$$
\lim _{\varepsilon \rightarrow 0}\left\|\frac{E_{t+\varepsilon} \psi-E_{t} \psi}{\varepsilon}-M E_{t} \psi\right\|=0
$$

(This shows that the vector function $\psi_{t}:=E_{t} \psi$ satisfies a differential equation $\partial_{t} \psi_{t}=M \psi_{t}$. So you just, hopefully, proved the existence (together with a beautiful representation) of a solution to a linear system of ODEs with constant coefficients!)

Exercise 4

Let $f \in L^{1}(\mathbb{R})$ and $\varphi \in C_{c}^{(1)}(\mathbb{R})$. (In other words, assume that $|f|$ is integrable and φ is continuously differentiable with a compact support.) Consider the convolution function $g=\varphi * f$ defined by

$$
g(t):=\int_{\mathbb{R}} \mathrm{d} x \varphi(t-x) f(x), \quad t \in \mathbb{R}
$$

Show that g is continuously differentiable and that $\frac{\mathrm{d}}{\mathrm{d} t} g(t)=\left(\varphi^{\prime} * f\right)(t)=\int_{\mathbb{R}} \mathrm{d} x \varphi^{\prime}(t-x) f(x)$ for all $t \in \mathbb{R}$. As a corollary, conclude also that if φ above is smooth (it has derivatives of any order) then so is g. (Hint: Mean value theorem and Dominated convergence)

