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The tree structure is currently the accepted paradigm to represent
evolutionary relationships between organisms, species or other
taxa. However, horizontal, or reticulate, genomic exchanges are
pervasive in nature and confound characterization of phylogenetic
trees. Drawing from algebraic topology, we present a unique evo-
lutionary framework that comprehensively captures both clonal
and reticulate evolution. We show that whereas clonal evolution
can be summarized as a tree, reticulate evolution exhibits nontrivial
topology of dimension greater than zero. Our method effectively
characterizes clonal evolution, reassortment, and recombination in
RNA viruses. Beyond detecting reticulate evolution, we succinctly
recapitulate the history of complex genetic exchanges involving
more than two parental strains, such as the triple reassortment of
H7N9 avian influenza and the formation of circulating HIV-1 re-
combinants. In addition, we identify recurrent, large-scale patterns
of reticulate evolution, including frequent PB2-PB1-PA-NP cosegre-
gation during avian influenza reassortment. Finally, we bound the
rate of reticulate events (i.e., 20 reassortments per year in avian in-
fluenza). Our method provides an evolutionary perspective that
not only captures reticulate events precluding phylogeny, but also
indicates the evolutionary scales where phylogenetic inference
could be accurate.
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In On the Origin of the Species in 1859, Darwin first proposed the
phylogenetic tree as a structure to describe the evolution of

phenotypic attributes. Since then, the advancement of modern
sequencing has spurred development of a number of phyloge-
netic inference methods (1, 2). The tree structure effectively
models vertical or clonal evolution, mediated by random muta-
tions over multiple generations (Fig. 1A). Phylogenetic trees,
however, cannot capture horizontal, or reticulate, events, which
occur when distinct clades merge together to form a new hybrid
lineage (Fig. 1B and SI Appendix, Fig. S1). In nature, horizontal
evolution can occur through species hybridization in eukaryotes,
lateral gene transfer in bacteria, recombination and reassortment
in viruses, viral integration in eukaryotes, and fusion of genomes
of symbiotic species (e.g., mitochondria). These horizontal ge-
netic exchanges create incompatibilities that mischaracterize the
species tree (3). Doolittle (4) argued that molecular phyloge-
neticists have failed to identify the “true tree of life” because the
history of living organisms cannot be understood as a tree. One
may wonder what other mathematical structures beyond phy-
logeny can capture the richness of evolutionary processes.
Current techniques that detect reticulate events can be divided

into phylogenetic and nonphylogenetic methodologies. Phylo-
genetic methods detect incongruence in the tree structure of
different segments (5–8). Nonphylogenetic methods probe for
homoplasies (shared character traits independently arising in
different lineages by convergent or parallel evolution) or similar
inconsistencies in sequence alignment (9–13). Although many of
these methods are designed for sensitive detection of viral re-
combination and bacterial lateral gene transfer, they do not pro-
vide comprehensive representation of the evolutionary process.
Perhaps phylogenetic networks exemplify the largest de-

parture from trees, allowing multiple paths between any two
leaves. These methods visualize incompatibilities of sequence
patterns or tree topologies as reticulation cycles in a network

(14–16). Only the subfield of evolutionary networks is amenable
to reticulate detection. However, major stumbling blocks abound
for such methods. Although phylogenetic network structure is
not necessarily unique, all current implementations produce only
one network that may represent a suboptimal solution; results
may depend on factors as arbitrary as the ordering of samples in
the data matrix (16, 17). Moreover, many methods have imprac-
tical running times for even small datasets owing to the nondeter-
ministic polynomial-time hard (NP-hard) problem of determining
whether a tree exists in an evolutionary network (18). To address
these obstacles, ad hoc methods simplify the search space of net-
work structures: k-level, galled, tree-child, and tree-sibling networks.
Although some of these methods cease to be NP-hard (19), all
prioritize computational tractability over biological modeling
(20). For example, galled tree networks minimize the number of
inferred recombinations by ensuring that reticulation cycles share
no nodes (21). This heuristic is appropriate only for low recom-
bination rates and is not universally applicable.
Here, we propose a comprehensive and fast method of

extracting large-scale patterns from genomic data that captures
both vertical and horizontal evolutionary events at the same
time. The structure we propose is not a tree or a network, but
a set of higher-dimensional objects with well-defined topological
properties. Using the branch of algebraic topology called per-
sistent homology (throughout this paper, we refer to mathemat-
ical homology, not the notion of genetic or structural similarity),
we extract robust global features from these high-dimensional
complexes. Unlike phylogenetic methods that produce a single,
possibly suboptimal, tree or network, persistent homology con-
siders all topologies and their relationships across the entire pa-
rameter space of genetic distance. Through analysis of viral and
simulated genomic datasets, we show how persistent homology
captures fundamental evolutionary aspects not directly inferred
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from phylogeny. In addition to representing clonal and reticulate
evolution, persistent homology can determine the rate of hori-
zontal genomic events, complex exchanges involving more than
two organisms, and statistical patterns of cosegregation (genes
more likely to be exchanged as a set). We calibrate our method
using viral genomes because they are richly sampled and anno-
tated, with a wide range of reticulate events; however, we foresee
broader application to bacteria, eukaryotes, and other datasets.

Results
Persistent Homology in Evolution. We propose a mathematical
structure that represents both vertical and horizontal evolu-
tionary events at once. This structure is based on the field of
algebraic topology, which characterizes global properties of a
geometric object that are invariant to continuous deformation,
that is, stretching or bending without tearing or gluing any single
part of it. These properties include such notions as connected-
ness (the number of distinct connected components), as well as
the number of holes. We aim to apply these concepts to char-
acterize the topology of evolution. In settings of vertical evolu-
tion, a tree can be continuously deformed into a single point or
connected component (Fig. 1C). The same action cannot be
performed for a reticulate structure without destroying the loops
within it. The active hypothesis is that the presence of holes
results directly from reticulate events (Fig. 1D).
We are then interested in computing the number of holes in

the evolutionary topological space, and algebraic topology math-
ematically formalizes these notions. In particular, holes can exist
in different dimensions: a loop in one dimension, a void or cavity
in two dimensions, and so on. To be precise, we are interested in
holes that are “irreducible” cycles: a cycle in dimension k that
does not serve as the boundary of a (k + 1)-dimensional object.
We can define a topological invariant called the “homology
group” Hk as an algebraic structure that encompasses all holes
in dimension k, and the “Betti number” bk is the count of these
holes. The special case of the H0 group addresses how many
independent, unconnected components comprise a space.
For our purposes, we can assume that evolution forms some

topological space E. Instead of directly observing E, we observe
a sample of data points in E, particularly the genomic sequences
separated from each other by some genetic distance. The set of
these data points and space E do not share the same topology.
However, we can estimate the topology of E by defining a function

B(x,e) as the ball centered at data point x with radius of genetic
distance e. We can show that at some value of e, the union of
balls B(x,e) for all x shares the same topology as E (SI Appendix,
Fig. S2). The topology of the union of balls is difficult to compute
but can be estimated by constructing a corresponding topological
space called a simplicial complex (22–24). In short, a simplicial
complex is a set of points, lines, triangles, tetrahedra, and higher-
dimensional “simplices.’’ Like any topological space, this struc-
ture can contain holes of different dimensions (SI Appendix, Fig.
S3). To build the simplicial complex, one can construct a line if any
pair of points is within distance e of each other, a triangle if any
triplet of points are all within e of each other, and so forth. At some
e, the resulting simplicial complex shares the same topology as the
union of balls, and that of E as well (SI Appendix, Fig. S2).
However, different scales of e create different simplicial com-

plexes and reveal different irreducible cycles. A more compre-
hensive approach would consider all simplicial complexes over
the entire parameter space of e. For irreducible cycle C, we track
when C exists over a filtration (subset) of simplicial complexes
over a particular interval [aC,bC] of genetic distance e. Here, aC
and bC are the birth and death of feature C. We then perform
persistent homology, which computes the homology groups of
dimension k at all scales e. This process is depicted in a barcode
plot, which shows a horizontal bar between e = [aC,bC] for every
independent object C in the homology group. Bars persisting
over a large interval of e are unlikely to derive from noise (24).
Our aim, then, is to apply persistent homology to the study of

evolution. We consider a set of genomes and calculate the ge-
netic distance between each pair of sequences. Using the pair-
wise distance matrix, we calculate the homology groups across all
genetic distances e in different dimensions. We can refine our
original hypothesis now and assert that zero-dimensional topol-
ogy provides information about vertical evolution. At a particu-
lar scale e, for example, b0 represents the number of different
strains or subclades. However, one-dimensional topology pro-
vides information about horizontal evolution, because reticulate
structures contain loops (Fig. 2). We hypothesize that even higher-
dimensional homology groups Hi≥2 result from multiple hori-
zontal exchanges or complex reticulate events involving multiple
parental strains. The “generator,” the set of sequences that
represents a particular irreducible cycle, can describe such
complex genomic mixtures, as we will see in simulations and
real data (HIV and avian influenza). In sum, we propose to con-
nect the principles of algebraic topology and evolution and pro-
vide a dictionary that translates vocabulary in both fields (Table 1).

Topological Obstruction to Phylogeny. We can mathematically for-
malize the role of phylogeny within the framework of persistent
homology. By definition, trees cannot contain holes; therefore,
higher-dimensional irreducible cycles in a simplicial complex con-
structed from genomic data preclude phylogenetic construction
at genetic distance e. This intuition is proven for holes in dimen-
sion one and higher (SI Appendix, Theorem 2.1). We define an
additive tree as a phylogeny where the distance between two
leaves is the sum of the branch lengths connecting them. If there
exists a nonzero Betti number of dimension greater than zero,
then no additive tree exists that appropriately represents the
genomic data. A related concept is the set of genetic distances
I where nonzero topology vanishes. I reflects the evolutionary
scales at which there is no evidence of reticulate exchange that
can confound tree construction (Fig. 2B).
We define the topological obstruction to phylogeny (TOP) to

be the L-∞ norm, or maximum, of B. If TOP is nonzero, then no
additive tree exists that can appropriately represent the data.
Another important concept is stability: the amount of fluctuation
in the results owing to statistical noise, sequencing errors, or
incomplete sampling. We show that TOP is a stable measure that
is bounded by the Gromov–Hausdorff distance to the additive
tree (SI Appendix, Theorem 2.2). Because additive structures have
vanishing higher-dimensional homology, small deviations from
additivity generate only small bars in the barcode.

A C

B D

Fig. 1. Linking algebraic topology to evolution. (A) A tree depicting vertical
evolution. (B) A reticulate structure capturing horizontal evolution, as well.
(C) A tree can be compressed into a point. (D) The same cannot be done for
a reticulate structure without destroying the hole at the center.
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Topological Estimates of Recombination/Reassortment Rates. Most
approaches to estimating recombination rates are based on ob-
served variance in site differences between pairs of haplotypes
(25) or maximum likelihood estimators (26). Typically, these es-
timators assume constant population size, panmictic populations,
and constant rates. Persistent homology, however, provides a
lower bound for these rates by considering independent irreduc-
ible cycles for all e in a period. The irreducible cycle rate (ICR)
then is defined as the average number of the one-dimensional
irreducible cycles per unit of time, ICR = (total number of one-
dimensional bars for all e)/(time frame). The numerator of this
quantity is the L-0 norm (number of higher-dimensional bars).
We normalized ICR based on the time interval between the ear-
liest 5% and most recent 5% of the sequence dataset. Simulations
show that ICR is proportional to and provides a lower bound for
recombination/reassortment rate (SI Appendix, Fig. S5 C and D
and G and H). In this way, sequence data add a temporal di-
mension to our methodology, a unique aspect not shared by other
applications of algebraic topology.

Detection of Simulated Reticulate Events. To evaluate sensitivity
and specificity of persistent homology to capture complex evo-
lutionary processes, we simulated four scenarios: clonal evolution,
population admixture, reassortment, and homologous recombina-
tion. Each simulation represents a population of constant size
evolving over generations under a Wright–Fisher model with sub-
stitution rate μ, reassortment/recombination rate r, number of
reassorting segments S, and subsamples with or without ancestral
sequences (SI Appendix, Supplementary Text). Simulations show
that (i) nontrivial homology appears when r is nonzero, (ii)
one-dimensional ICR increases proportionally to r, and (iii)
multiple reassortment/recombinant events can produce 2D to-
pology. A precise account of simulations, comparison with other

methods to identify recombination, and discussion of results
can be found in SI Appendix, Supplementary Text and Figs. S4–S6.

Vertical Evolution in Influenza. The evolution of influenza, a seg-
mented single-stranded RNA orthomyxovirus, is punctuated by
frequent reassortment. To characterize influenza A evolution, we
applied persistent homology to four influenza datasets from
several hosts (avian, swine, and human), each numbering as
many as 1,000 genomic sequences (Dataset S1, Table S1). When
applied to a single viral segment unaffected by reassortment,
higher-dimensional homology groups vanish, suggesting that no
significant reticulate events have taken place (Fig. 3 A and B).
Alignments of single segments are therefore more suitable for
phylogenetic analysis.
In settings of vertical evolution, we can transform a filtration

of simplicial complexes of dimension zero into an equivalent dis-
tance-based dendrogram. Fig. 4A represents the zero-dimensional
topology of the hemagglutinin (HA) segment of avian influenza
viruses. The zero-dimensional generators (Dataset S1, Table S2) at
higher genetic distances e indicate the major clusters, co-
inciding with the major antigenic subtypes (H1–H16). From
the bar sizes of the barcode (Fig. 4A), we can create a dendro-
gram (Fig. 4B) that recapitulates classic phylogenetic analyses
(27, 28), depicted in Fig. 4C. Importantly, our method deduces
the two major HA groups and, in particular, tight clusters of H3
and H4; H7, H10, and H15; H8, H9, and H12; and H13 and H16.

Reassortment in Influenza Evolution. Owing to reassortment, each
individual influenza segment can carry its own unique evolution-
ary history. Consequently, persistent homology of concatenated
segments that are adjoined into a single sequence demonstrates
evidence of reassortment that precludes phylogeny. For avian
influenza, individual segments of HA (Fig. 3A) and neuraminidase

A B Fig. 2. Persistent homology characterizes topological
features of vertical and horizontal evolution. Evolution
was simulated with and without reassortment (SI Ap-
pendix, Supplementary Text). (A) A metric space of
pairwise genetic distances d(i,j) can be calculated for
a given population of genomic sequences g1,. . ., gn.
We visualize these data points using principal co-
ordinate analysis (PCoA) (SI Appendix, Supplementary
Text). (B) In the construction of simplicial complexes,
two genomes are considered related (joined by a line)
if their genetic distance is smaller than e. Three ge-
nomes within e of each other form a triangle, and so
on (SI Appendix, Supplementary Text). From there, we
calculate the homology groups at different genetic
scales. In the barcode, each bar in different dimensions
represents a topological feature of a filtration of sim-
plicial complexes persisting over an interval of e. A one-
dimensional cycle (red highlight) exists at e = [0.13,
0.16 Hamming distance] and corresponds to a re-
ticulate event. The evolutionary scales I where b1 =
0 are highlighted in gray.

Table 1. Dictionary between persistent homology and evolutionary concepts

Persistent homology Viral evolution

Filtration value e Genetic distance (evolutionary scale)
Zero-dimensional Betti number at filtration value e Number of clusters at scale e
Generators of Zero-dimensional Betti number homology A representative element of the cluster
Hierarchical relationship among generators of Zero-dimensional

Betti number homology
Hierarchical clustering

1D Betti number Number of reticulate events (recombination and reassortment)
Generators of 1D homology Reticulate events
Generators of 2D homology Complex horizontal genomic exchange
Nonzero high-dimensional homology (topological obstruction to phylogeny) No phylogenetic representation
No. of higher-dimensional generators over time (irreducible cycle rate) Lower bound on rate of reticulate events
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(NA) (Fig. 3B) independently produce only zero-dimensional
homology groups. However, concatenating these segments reveals
a complex high-dimensional topology (Fig. 3C and Dataset S1,
Tables S3 and S4). These results confirm that persistent ho-
mology can detect pervasive reassortment in influenza.
To illustrate how higher-dimensional topology captures reas-

sortments, we analyzed 1,000 human H3N2 genomes and iden-
tified three generators of one-dimensional homology when joining
the PB2 and HA segments. As an example, the [G3] generator
with the longest bar (Dataset S1, Table S5) is represented by an
oriented one-dimensional irreducible cycle, implying at least one
reassortment involving PB2 and HA of the isolates or their
ancestors. The number of sequences in the generator serves as an
upper bound on the number of candidate reassortants. Simple
observation of the resulting sequence alignment reveals two di-
vergent allelic patterns between informative sites in PB2 and HA,
as reflected in incongruent trees (SI Appendix, Fig. S8 A and B)
and reticulate cycles of the phylogenetic network (SI Appendix,
Fig. S8C).
Our analysis of the concatenated H1N1pdm genome identified

two nontrivial cycles, nominating candidate H1N1pdm reassort-

ments in humans (Dataset S1, Table S6). Given the greater ho-
mogeneity of H1N1pdm sequences due to increased sampling,
the number of informative sites among [G2] sequences was too
small to perform maximum likelihood phylogenetic analysis. We
therefore visually inspected informative sites, which suggested
potential reassortment of two viral strains each contributing
[PB2, M1, NS1] and [PB1, PA, HA] (SI Appendix, Fig. S9A).
Phylogenetic network analysis supports these incompatibilities
(SI Appendix, Fig. S9B).
One-dimensional ICR provides a lower-bound estimate of

reassortment rate (SI Appendix, Fig. S10B). We calculate ICR < 1
event per year for classic H1N1 swine and H3N2 human influenza,
supported by previous phylogenetic estimates (29, 30). In contrast,
we calculate a high rate of 22.16 reassortments per year for
avian influenza A (Dataset S1, Table S16). This difference could
be explained by the high diversity and frequent coinfection of
avian viruses (31) and correlates with the high proportion of
avian reassortants reported in previous studies (32).

Nonrandom Reassortment Pattern in Avian Influenza. Although
previous phylogenetic studies confirmed a high reassortment rate
in avian influenza, none has identified a clear pattern of gene
segment association (32). To determine whether any segments
cosegregate more than expected by chance, we applied persistent
homology to avian influenza. We first considered all pairs of
concatenated segments and estimated the number of reassort-
ments by b1. We then ascertained the significance of observing
a number of reassortments between each pair of segments given
the total estimate of reassortments in the concatenated genome
(SI Appendix, Supplementary Text). Analysis of avian influenza
reveals a statistically significant configuration of four cose-
gregating segments: polymerase basic 2 (PB2), polymerase basic 1
(PB1), polymerase acidic (PA), and nucleoprotein (NP) (Fig. 3D).
Interestingly, this pattern mimics previous in vitro results that sug-
gest that effective protein–protein interaction between the poly-
merase complex and the NP protein constrain reassortment (31).

Recapitulating the H7N9 Avian Influenza Triple Reassortment. In
April 2013, an outbreak of H7N9 avian influenza in humans and
poultry began in the Jiangsu province of China and spread to kill
32 out of 131 positive cases as of May 8, 2013 (33). By con-
structing a series of trees per gene and observing conflicting
structure by eye, Gao et al. (34) determined that the novel virus
was a triple reassortment of an H7N3 A/duck/Zhejiang/12/2011-
like lineage, an H7N9 A/wild bird/Korea/A14/2011-like lineage,
and an H9N2 A/brambling/Beijing/16/2012-like lineage donating
HA, NA, and internal segments, respectively. Persistent homol-
ogy of concatenated H7N9, H9N2, and H7N3 avian genomes
identified a 2D irreducible cycle representing the H7N9 triple
reassortment. This 2D cavity is enclosed by a six-sided b2 poly-
tope formed by joining two tetrahedra at the top and bottom
(Fig. 3E). The top tetrahedron is formed at the apex by H7N9
reassortants and at the base by members of the three parental
lineages. This finding recapitulates the triple reassortment in a
succinct, visually interpretable manner.

Topology of HIV, HEPC1, Dengue, and Other Viruses. The retrovirus
HIV is notorious for high diversity mediated by not only a high
mutation rate, but also frequent homologous recombination,
leading to antiretroviral resistance (35) and immune evasion (36).
These factors cloud studies that classically rely on phylogenetics,
such as estimates of the origin of the HIV pandemic (37), under-
scoring the need for nonphylogenetic approaches. We apply our
methodology to the independent and concatenated alignments
of HIV-1 gag, pol, and env, the three largest genes of the genome.
Like influenza, the concatenated alignment reproduces one-
dimensional topology, indicative of nonclonal evolution. However,
individual gene alignments also reveal one-dimensional ho-
mology groups, suggesting that recombination breakpoints
exist within as well as between individual genes (Fig. 5 A–D and
Dataset S1, Tables S8–S10).

CA

B

D E

Fig. 3. Persistent homology of reassortment in avian influenza. Analysis of
(A) HA and (B) NA reveal no significant one-dimensional topological struc-
ture. (C) Concatenated segments reveal rich 1D and 2D topology, indicating
reassortment. For specific parameters, see SI Appendix, Supplementary Text.
(D) Network representing the reassortment pattern of avian influenza de-
duced from high-dimensional topology. Line width is determined by the
probability that two segments reassort together. Node color ranges from blue
to red, correlating with the sum of connected line weights for a given node.
For specific parameters, see SI Appendix, Supplementary Text. (E ) b2 pol-
ytope representing the triple reassortment of H7N9 avian influenza. Concat-
enated genomic sequences forming the polytope were transformed into 3D
space using PCoA (SI Appendix, Supplementary Text). Two-dimensional bar-
coding was performed using Vietoris–Rips complex and a maximum scale e
of 4,000 nucleotides.
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In addition, persistent homology of the concatenated HIV gag,
pol, and env produced 2D topology derived from complex re-
combination events (Dataset S1, Table S12). One example is the
[G4] generator depicted by the b2 polytope in Fig. 5E. This 2D
cavity identifies CRF13_cpx and CRF0209, two complex circu-
lating recombinant forms (CRFs) that result from recombination
between viruses of different subtypes. CRF13_cpx recombinant
derives from subtypes A, G, J, and U, and CRF01_AE. CRF0209
is a recombinant between CRF02_AG and CRF09_cpx (subtypes
A, G, and U). The b2 polytope includes other viral subtypes A, B,
C, D, and F, as well.
Flaviviruses are positive single-stranded RNA viruses, whose

ability to perform homologous recombination through RNA poly-
merase template switching has been debated. Sporadic recombi-
nants have been detected for flaviviruses such as hepatitis C (38,

39), dengue virus (40, 41), andWest Nile virus (42). However, some
of these reports, as in dengue, have been shown to be the product
of sequencing error (43), and it is generally agreed that if re-
combination occurs, it is rare. To assay the extent of flavivirus re-
combination, we applied our methodology to the polyproteins of
hepatitis C subtype 1, dengue subtypes 1–4, and West Nile virus.
We found high-dimensional topology for hepatitis C virus (Dataset
S1, Table S13), although at lower TOP and ICR than in HIV.
However, we found little to no high-dimensional structure for
dengue (SI Appendix, Fig. S11) and no evidence of recombination
for West Nile virus, suggesting that recombination rarely occurs in
these viruses.
Recombination is considered even less frequent in negative-

sense RNA viruses such as Newcastle virus, with only scattered
studies reporting positive findings (44). Interestingly, persistent
homology of Newcastle virus confirmed a low ICR but a non-
vanishing TOP (Dataset S1, Table S14). SI Appendix, Fig. S10
and Tables S15 and S16 summarize TOP and ICR for all viruses

A

B

C

Fig. 4. Reconstructing phylogeny from persistent homology of avian in-
fluenza HA. (A) Barcode plot in dimension 0 of all avian HA subtypes. Each
bar represents a connected simplex of sequences given a Hamming distance
of e. When a bar ends at a given e, it merges with another simplex. Gray bars
indicate that two simplices of the same HA subtype merge together at
a given e. Solid color bars indicate that two simplices of different HA sub-
types but same major clade merge together. Interpolated color bars indicate
that two simplices of different major clades merge together. Colors corre-
spond to known major clades of HA. For specific parameters, see SI Ap-
pendix, Supplementary Text. (B) Phylogeny of avian HA reconstructed from
the barcode plot in A. Major clades are color-coded. (C) Neighbor-joining
tree of avian HA (SI Appendix, Supplementary Text).

A B

C D

E

Fig. 5. Barcoding plots of HIV-1 reveal evidence of recombination in (A) env,
(B), gag, (C) pol, and (D) the concatenated sequences of all three genes. One-
dimensional topology present for alignments of individual genes as well as the
concatenated sequences suggests recombination. (E) b2 polytope representing
a complex recombination event with multiple parental strains. Sequences of
the [G4] generator of concatenated HIV-1 gag, pol, and env were transformed
into 3D space using PCoA (SI Appendix, Supplementary Text) of the Nei–Tamura
pairwise genetic distances. Two-simplices from the [G4] generator defined
a polytope whose cavity represents a complex recombination. Each vertex of
the polytope corresponds to a sequence that is color-coded by HIV-1 sub-
type. For specific parameters, see SI Appendix, Supplementary Text.
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in this paper. Additional results are detailed in SI Appendix,
Supplementary Text.

Discussion
Persistent homology can quickly determine robust topological
properties of evolution from big genomic datasets. Barcodes
generated by persistent homology represent the structure of
these properties at all evolutionary scales. The unveiled struc-
ture is equivalent to a tree in cases where only vertical genetic
exchange takes place, as can be seen in single-segment analysis
of influenza A, dengue, West Nile virus, and rabies. However,
persistent homology can also capture horizontal events such as
recombination and reassortment. Generators of nontrivial ho-
mology identify specific reticulate events, and the normalized count
provides a lower bound for the recombination/reassortment rate.
Using this strategy, we estimated these rates in several influenza
strains, HIV, flaviviruses, rabies, and Newcastle virus. Moreover,
we used higher-dimensional topology to uncover complex evo-
lutionary patterns, such as cosegregating segments during in-
fluenza reassortment. As a guide, we provide a dictionary that
links evolutionary concepts to principles of algebraic topology
(Table 1).
Persistent homology proposes a departure from the tree par-

adigm of evolution. Where many phylogenetic methods produce
a single, possibly suboptimal, tree or network, persistent ho-
mology analyzes the invariant topological characteristics of all
simplicial complexes across the entire parameter space of genetic
distance. Moreover, our methodology exhibits stability to small
fluctuations in input data.

In this paper, we propose a phenomenological approach to
study evolution by capturing topological features of the relation-
ships between genomes without imposing preconceived struc-
ture. These relationships could be phylogenetic or not, between
organisms of the same or different species. By uncovering global,
topological features that cannot be represented by phylogeny,
persistent homology analyzes viral genomic datasets to (i) rep-
resent general evolutionary processes that may include reticulate
events, (ii) estimate reticulate rates, and (iii) extract complex
patterns in these processes. In the future, we foresee further
application of persistent homology to other nonviral taxa and to
addressing the species problem from genomic data.

Methods
Here,weharness persistent homology to characterize viral evolution. To this
end, we apply our method to both real and simulated viral datasets. Col-
lection or generation of datasets, mathematical background and implemen-
tation of persistent homology, comparison with other methods detecting
recombination, and other tests used in the paper are detailed in SI Appendix,
Supplementary Text.
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