Return by Tuesday, November 19.

1. Prove that the κ-cone $X=C_{\kappa} Y$ over a metric space Y is complete if and only if Y is complete.
2. Let Y be a metric space, \bar{Y} its completion, and $\kappa \in \mathbb{R}$. Prove that $C_{\kappa} \bar{Y}$ and $\overline{C_{\kappa} Y}$, the completion of $C_{\kappa} Y$, are isometric.
3. Suppose that the κ-cone $X=C_{\kappa} Y$ over a metric space Y is a $\operatorname{CAT}(\kappa)-$ space. Prove that for each pair of points $y_{1}, y_{2} \in Y$, with $d\left(y_{1}, y_{2}\right)<\pi$, there exists a unique geodesic segment in Y joining y_{1} and y_{2}.
4. Let Y be a length space and $\kappa \in \mathbb{R}$. Show that $C_{\kappa} Y$ is a length space.

5 . Let (X, d) be a metric space of curvature $\leq \kappa$. For each $n \in \mathbb{N}$, we define a metric d_{n} by setting

$$
d_{n}(x, y)=n d(x, y) .
$$

Prove that the tangent cone $C_{0} S_{p}(X)$ at $p \in X$ (and its completion) is a 4-point limit of the sequence $\left(X, d_{n}\right)$.

