Department of Mathematics and Statistics Metric Geometry Exercise 9 20.11.2013

Return by Tuesday, November 19.

- 1. Prove that the κ -cone $X = C_{\kappa}Y$ over a metric space Y is complete if and only if Y is complete.
- 2. Let Y be a metric space, \overline{Y} its completion, and $\kappa \in \mathbb{R}$. Prove that $C_{\kappa}\overline{Y}$ and $\overline{C_{\kappa}Y}$, the completion of $C_{\kappa}Y$, are isometric.
- 3. Suppose that the κ -cone $X = C_{\kappa}Y$ over a metric space Y is a $CAT(\kappa)$ -space. Prove that for each pair of points $y_1, y_2 \in Y$, with $d(y_1, y_2) < \pi$, there exists a unique geodesic segment in Y joining y_1 and y_2 .
- 4. Let Y be a length space and $\kappa \in \mathbb{R}$. Show that $C_{\kappa}Y$ is a length space.
- 5. Let (X, d) be a metric space of curvature $\leq \kappa$. For each $n \in \mathbb{N}$, we define a metric d_n by setting

$$d_n(x,y) = n \, d(x,y).$$

Prove that the tangent cone $C_0S_p(X)$ at $p \in X$ (and its completion) is a 4-point limit of the sequence (X, d_n) .