Department of Mathematics and Statistics Metric Geometry Exercise 8 13.11.2013

Return by Tuesday, November 12.

- 1. Prove that the product $X_1 \times X_2$ of CAT(0)-spaces X_1 and X_2 is a CAT(0)-space (cf. Exercise 7/2).
- 2. Let $X = \mathbb{R}^2 \setminus \{(x, y) \in \mathbb{R}^2 : x > 0, y > 0\}$ be equipped with the length metric associated to the induced metric. Prove that X is a CAT(0)-space.
- 3. Let $X = \mathbb{R}^3 \setminus \{(x, y, z) \in \mathbb{R}^3 : x > 0, y > 0, z > 0\}$ be equipped with the length metric associated to the induced metric. Prove that X is not a CAT(0)-space.
- 4. Let X be a CAT(κ)-space. Suppose that α: [0, a] → X and β: [0, b] → X are geodesics such that α(0) = p = β(0).
 (a) Show that the κ-comparison angle

 $\angle_p^{(\kappa)}(\alpha(s),\beta(t))$

is increasing in both s > 0 and t > 0.

(b) Show that the Alexandrov angle satisfies

$$\mathcal{L}_p(\alpha,\beta) = \lim_{s,t\to 0} \mathcal{L}_p^{(\kappa)}(\alpha(s),\beta(t)) = \lim_{t\to 0} \mathcal{L}_p^{(\kappa)}(\alpha(t),\beta(t)) = \lim_{t\to 0} 2 \arcsin \frac{1}{2t} d(\alpha(t),\beta(t)).$$

- 5. Let X be a CAT(κ)-space and let $x, y \in X \setminus \{p\}$ with max $\{d(p, x), d(p, y)\} < D_{\kappa}$. Prove that
 - (a) $(p, x, y) \mapsto \angle_p([p, x], [p, y])$ is upper semicontinuous, and
 - (b) for fixed $p, (x, y) \mapsto \angle_p([p, x], [p, y])$ is continuous.