Return by Tuesday, October 29.

1. (a) Prove that any closed ball $\bar{B}(p, r) \subset \mathbb{S}^{n}$ of radius $r<\pi / 2$ is convex. That is, if $x, y \in \mathbb{S}^{n}$ and $[x, y] \subset \mathbb{S}^{n}$ is the geodesic segment joining x and y, then $[x, y] \subset \bar{B}(p, r)$.
(b) Prove that all balls (open or closed) in \mathbb{H}^{n} are convex.
2. Prove that the metric of a $\operatorname{CAT}(0)$-space X is convex, that is, each pair of geodesics $\alpha:[0, a] \rightarrow X$ and $\beta:[0, b] \rightarrow X$, with $\alpha(0)=\beta(0)$, satisfy the inequality

$$
d(\alpha(t a), \beta(t b)) \leq t d(\alpha(a), \beta(b))
$$

for all $t \in[0,1]$.
3. Let X be a $\operatorname{CAT}(\kappa)$-space and let $p, x, y \in X$ be such that $d(p, x)+$ $d(p, y)<D_{\kappa}$. Prove that the geodesic segment $[x, y]$ is the union of $[x, p]$ and $[p, y]$ if and only if

$$
\angle_{p}([p, x],[p, y])=\pi .
$$

4. Let X be a proper geodesic space. Suppose that there exists a unique geodesic segment $[x, y]$ joining points $x, y \in X$. Prove that, for every $\varepsilon>0$, there exists $\delta>0$ such that $\operatorname{dist}(z,[x, y])<\varepsilon$ whenever

$$
d(x, z)+d(z, y)<d(x, y)+\delta
$$

5. Prove that a geodesic space X is a $\operatorname{CAT}(\kappa)$-space if and only if for every geodesic triangle $\Delta(p, q, r)$ of perimeter $<2 D_{\kappa}$ the midpoint $m \in[q, r]$ $(d(q, m)=d(m, r))$ and its comparison point $\bar{m} \in[\bar{q}, \bar{r}] \subset \bar{\Delta}(p, q, r) \subset M_{\kappa}^{2}$ satisfy the inequality

$$
d(p, m) \leq d(\bar{p}, \bar{m})
$$

