Department of Mathematics and Statistics Metric Geometry Exercise 6 30.10.2013

Return by Tuesday, October 29.

- 1. (a) Prove that any closed ball $\overline{B}(p,r) \subset \mathbb{S}^n$ of radius $r < \pi/2$ is convex. That is, if $x, y \in \mathbb{S}^n$ and $[x, y] \subset \mathbb{S}^n$ is the geodesic segment joining x and y, then $[x, y] \subset \overline{B}(p, r)$.
 - (b) Prove that all balls (open or closed) in \mathbb{H}^n are convex.
- 2. Prove that the *metric* of a CAT(0)-space X is convex, that is, each pair of geodesics $\alpha \colon [0, a] \to X$ and $\beta \colon [0, b] \to X$, with $\alpha(0) = \beta(0)$, satisfy the inequality

$$d(\alpha(ta), \beta(tb)) \le t d(\alpha(a), \beta(b))$$

for all $t \in [0, 1]$.

3. Let X be a $CAT(\kappa)$ -space and let $p, x, y \in X$ be such that $d(p, x) + d(p, y) < D_{\kappa}$. Prove that the geodesic segment [x, y] is the union of [x, p] and [p, y] if and only if

$$\angle_p([p,x],[p,y]) = \pi.$$

4. Let X be a proper geodesic space. Suppose that there exists a unique geodesic segment [x, y] joining points $x, y \in X$. Prove that, for every $\varepsilon > 0$, there exists $\delta > 0$ such that $\operatorname{dist}(z, [x, y]) < \varepsilon$ whenever

$$d(x,z) + d(z,y) < d(x,y) + \delta.$$

5. Prove that a geodesic space X is a $CAT(\kappa)$ -space if and only if for every geodesic triangle $\Delta(p,q,r)$ of perimeter $\langle 2D_{\kappa}$ the midpoint $m \in [q,r]$ (d(q,m) = d(m,r)) and its comparison point $\bar{m} \in [\bar{q},\bar{r}] \subset \bar{\Delta}(p,q,r) \subset M_{\kappa}^2$ satisfy the inequality

$$d(p,m) \le d(\bar{p},\bar{m}).$$