Department of Mathematics and Statistics
Metric Geometry
Exercise 5
16.10.2013

Return by Tuesday, October 15.

1. Prove that $\langle x, y\rangle_{n, 1} \leq-1$ for all $x, y \in \mathbb{H}^{n}$ and that $\langle x, y\rangle_{n, 1}=-1 \Longleftrightarrow$ $x=y$.
2. Let $x \in \mathbb{H}^{n}$, let $u \in x^{\perp}$ be a unit vector (w.r.t. $\langle\cdot, \cdot\rangle_{n, 1}$) and let $\gamma: \mathbb{R} \rightarrow \mathbb{H}^{n}$,

$$
\gamma(t)=(\cosh t) x+(\sinh t) u
$$

be as in (2.10) in the lecture notes. Find $\gamma^{\prime}(t) \in \mathbb{R}^{n+1}$ and show that $\gamma^{\prime}(t) \in \gamma(t)^{\perp}$. Compute

$$
\left\|\gamma^{\prime}(t)\right\|:=\left\langle\gamma^{\prime}(t), \gamma^{\prime}(t)\right\rangle_{n, 1}^{1 / 2}
$$

3. Let $Z=\left\{0,1,1 / 2,1 / 4, \ldots, 2^{-n}, \ldots\right\}$. Glue isometrically together two copies of \mathbb{R} along Z and let X be the resulting metric space (cf. Theorem 1.87). Let $\alpha:[0, \infty) \rightarrow X$ and $\beta:[0, \infty) \rightarrow X$ be two geodesics emanating from 0 (more precisely, from [0]) such that

$$
\alpha(t)=\beta(t) \Longleftrightarrow t \in Z .
$$

Find $\angle_{0}(\alpha, \beta)$ and show that the angle does not exists in strong sense.
4. Let $\gamma_{n}:[0,1 / n] \rightarrow\left(\mathbb{R}^{2}, d_{\infty}\right)$,

$$
\gamma_{n}(t)=\left(t, t^{n}(1-t)^{n}\right), n \in \mathbb{N}, n \geq 2,
$$

be geodesics emanating from the origin. Prove that $\angle_{0}\left(\gamma_{n}, \gamma_{m}\right)=0$ for all $n, m \geq 2$.

