Department of Mathematics and Statistics

Metric Geometry
Exercise 2
25.9.2013

Return by Tuesday, September 24.

1. Let (X, d) be a metric space and $0<\alpha<1$. Find all rectifiable paths in the metric space $\left(X, d^{\alpha}\right)$.
2. Let $f:[0,1] \rightarrow[0,1]$ be the Cantor $1 / 3$-function and let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ be the path

$$
\gamma(t)=(t, f(t)) .
$$

Compute $V_{\gamma}(0, t)$ for $t \in[0,1]$. Study the existence and values of the metric derivative $|\dot{\gamma}|(t)$. Draw conclusions.
3. Construct a rectifiably connected metric space (X, d) such that $\mathcal{T}_{d_{s}} \not \subset \mathcal{T}_{d}$. In other words, that there exist open sets in the topology given by the inner metric d_{s} that are not open in the original topology given by d.
4. Prove that metric spaces $\left(\mathbb{R}^{2}, d_{1}\right)$ and $\left(\mathbb{R}^{2}, d_{\infty}\right)$ are not uniquely geodesic spaces by giving examples of points x and y that can be joined by more than one geodesic. Here d_{1} and d_{∞} are the metrics given by norms $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$, respectively.
5. Prove Theorem 1.64 (b) in the lecture notes.

