Return by Tuesday, December 3.

Given $a, b, c>0$, a tripod $T=T(a, b, c)$ is a metric tree consisting of three edges of lengths a, b, c meeting at a common vertex (of valence 3). For convenience, we extend the notion of a tripod to the cases where a, b, and c are allowed to be zero.

1. Let X be a metric space and $x, y, z \in X$. Prove that there exists a tripod T and an isometric embedding $f:\{x, y, z\} \rightarrow T$ (into) such that $(y \mid z)_{x}=$ $\ell(a)$, the length of the edge with $f(x)$ as an endpoint.
2. Suppose that X is (Gromov) δ-hyperbolic. Prove that

$$
|w-y|+|x-z| \leq \max \{|x-y|+|w-z|,|x-w|+|y-z|\}+2 \delta
$$

for every $x, y, z, w \in X$.
3. Suppose that X is a 0 -hyperbolic geodesic metric space. Prove that any pair of points can be joined by a unique geodesic segment.
4. It is known that every geodesic triangle in \mathbb{H}^{2} has an area at most π (follows from the Gauss-Bonnet theorem). Use this knowledge to verify that M_{κ}^{2} is δ-hyperbolic for some $\delta \geq 0$ if $\kappa<0$.
5. Let X be a δ-hyperbolic geodesic space. Prove that X satisfies the Rips condition with 4δ.
6. Detect and correct all misprints and incorrect statements above (if any).

