Department of Mathematics and Statistics Metric Geometry Exercise 10 4.12.2013

Return by Tuesday, December 3.

Given a, b, c > 0, a tripod T = T(a, b, c) is a metric tree consisting of three edges of lengths a, b, c meeting at a common vertex (of valence 3). For convenience, we extend the notion of a tripod to the cases where a, b, and c are allowed to be zero.

- 1. Let X be a metric space and $x, y, z \in X$. Prove that there exists a tripod T and an isometric embedding $f : \{x, y, z\} \to T$ (into) such that $(y|z)_x = \ell(a)$, the length of the edge with f(x) as an endpoint.
- 2. Suppose that X is (Gromov) δ -hyperbolic. Prove that

 $|w - y| + |x - z| \le \max\{|x - y| + |w - z|, |x - w| + |y - z|\} + 2\delta$ for every $x, y, z, w \in X$.

- 3. Suppose that X is a 0-hyperbolic geodesic metric space. Prove that any pair of points can be joined by a unique geodesic segment.
- 4. It is known that every geodesic triangle in \mathbb{H}^2 has an area at most π (follows from the Gauss-Bonnet theorem). Use this knowledge to verify that M_{κ}^2 is δ -hyperbolic for some $\delta \geq 0$ if $\kappa < 0$.
- 5. Let X be a δ -hyperbolic geodesic space. Prove that X satisfies the Rips condition with 4δ .
- 6. Detect and correct all misprints and incorrect statements above (if any).