Metric Geometry Fall 2013 HW 9 (JK)

Exercise 1. Prove that the κ -cone $C_{\kappa}Y$ over a metric space is complete if and only if Y is complete.

Proof. Assume $C_{\kappa}Y$ is complete and let (y_n) be a Cauchy sequence in Y. Set $x_n = t_0 y_n$ where $0 < t_0 \leq D_{\kappa}/2$ and note that $d(0, x_n) = t_0$ for all n. We claim that (x_n) is a Cauchy sequence in $C_{\kappa}Y$. There are three cases:

 $\kappa = 0.$

$$d(x_m, x_n)^2 = t_0^2 + t_0^2 - 2t_0^2 \cos(d_\pi(y_m, y_n)) \to 0,$$

as $\cos(d_{\pi}(y_m, y_n)) \to 1$ since $d_{\pi}(y_m, y_n) \to 0$ by assumption.

 $\kappa < 0.$

$$\cosh(\sqrt{-\kappa}d(x_m, x_n)) = \cosh^2(\sqrt{-\kappa}t_0) - \sinh^2(\sqrt{-\kappa}t_0)\cosh(d_\pi(y_m, y_n))$$
$$\to \cosh^2(\sqrt{-\kappa}t_0) - \sinh^2(\sqrt{-\kappa}t_0) = 1,$$

and it follows that $d(x_m, x_n) \to 0$.

 $\kappa > 0.$

$$\cos(\sqrt{\kappa}d(x_m, x_n)) = \cos^2(\sqrt{\kappa}t_0) + \sin^2(\sqrt{\kappa}t_0)\cos(d_\pi(y_m, y_n))$$
$$\to \cos^2(\sqrt{\kappa}t_0) + \sin^2(\sqrt{\kappa}t_0) = 1,$$

and it follows that $d(x_m, x_n) \to 0$.

Hence, (x_n) is a Cauchy sequence in $C_{\kappa}Y$, and by completeness converges to a point at distance t_0 from the vertex of the cone, say $x = t_0 y$. In other words, $t_0 y_n \to t_0 y$, and by the definition of the cone metric $y_n \to y$. Thus, Y is complete. Conversely, assume Y is complete and let $(x_n) = (t_n y_n)$ be a Cauchy sequence in $C_{\kappa}Y$ which does not converge to 0. Since $C_{\kappa}Y$ is a metric space $\{x_n\}$ is bounded and eventually contained in a ball of finite radius centred at the vertex of the cone, 0. In other words $d(x_n, 0) \leq r < \infty$, and writing out the cone metric in all the three cases we see that the sequence (t_n) is bounded. Thus, the sequence (t_n) has a subsequence (t_{n_i}) converging to $t' \neq 0$. Consider the case $\kappa = 0$. Now

$$d(x_{m_i}, x_{n_i}) = t_{m_i}^2 + t_{n_i}^2 - 2t_{m_i}t_{n_i}\cos(d_{\pi}(y_{m_i}, y_{n_i})),$$

and

$$\lim_{m_i, n_i \to \infty} \cos(d_{\pi}(y_{m_i}, y_{n_i})) = \lim_{m_i, n_i \to \infty} \frac{d(x_{m_i}, x_{n_i}) - 2t_{m_i} t_{n_i}}{-2t_{m_i} t_{n_i}} = \frac{2{t'}^2}{2{t'}^2} = 1$$

Similarly for $\kappa \neq 0$. Hence, (y_{n_i}) is a Cauchy sequence, and by completeness $y_{n_i} \rightarrow y$. Thus, the sequence $(x_n) = (t_n y_n)$ has a converging subsequence, $(t_{n_i} y_{n_i})$ converging to t'y, and it follows that $C_{\kappa}Y$ is complete.

Exercise 2. Let Y be a metric space, \overline{Y} its completion, and $\kappa \in \mathbb{R}$. Prove that $C_{\kappa}\overline{Y} \cong \overline{C_{\kappa}Y}$.

Proof. By Theorem 1.31. there exists isometric embeddings

$$f: Y \to Y$$
$$g: C_{\kappa}Y \to \overline{C_{\kappa}Y}.$$

Let

$$h\colon C_{\kappa}\overline{Y}\to \overline{C_{\kappa}Y},$$

be defined point-wise as

$$h(x) = \lim_{n \to \infty} g(ty_n),$$

where $x = t\overline{y}$ and $\overline{y} = \lim_{n \to \infty} f(y_n)$, $y_n \in Y$. In particular, note that h is well defined since $\overline{C_{\kappa}Y}$ is complete. The claim now follows if h is an isometry. First note that h is surjective since $\operatorname{Im} g$ is dense in $\overline{C_{\kappa}Y}$. For $x_1 = t_1\overline{y}_1, x_2 = t_2\overline{y}_2 \in C_{\kappa}\overline{Y}$

$$d(h(x_1), h(x_2)) = d(\lim_{n \to \infty} g(ty_{1n}), \lim_{n \to \infty} g(ty_{2n})) = \lim_{n \to \infty} d(g(ty_{1n}), g(ty_{2n}))$$

= $\lim_{n \to \infty} d(ty_{1n}, ty_{2n}) = \lim_{n \to \infty} d(tf(y_{1n}), tf(y_{2n})) = d(t\bar{y}_1, t\bar{y}_2)$
= $d(x_1, x_2),$

where the third equality follows since g is an isometric embedding into $\overline{C_{\kappa}Y}$, and similarly the fourth equality follows from the definition of the cone metric and the fact that f is an isometric embedding into \overline{Y} . Thus, h is an isometry. \Box

Exercise 3. Suppose that the κ -cone $C_{\kappa}Y$ over a metric space Y is a $CAT(\kappa)$ -space. Prove that for each pair of points $y_1, y_2 \in Y$ with $d(y_1, y_2) < \pi$ there exists a unique geodesic segment in Y joining y_1 and y_2 .

Proof. Since $C_{\kappa}Y$ is a $CAT(\kappa)$ -space, by Corollary 3.28 it follows that a neighbourhood of the vertex $0 \in C_{\kappa}Y$ is a $CAT(\kappa)$ -space, and so by Theorem 3.12(3) the cone point 0 has a convex neighbourhood. So, for small enough $t, x_1 = ty_1$ and $x_2 = ty_2$ can be joined with a unique geodesic segment, $[x_1, x_2]$. We claim that this projects to the unique geodesic segment $[y_1, y_2]$ joining y_1 and y_2 in Y. Towards this, let $x = sy \in [x_1, x_2]$, then s > 0, since if s = 0 then $d(x_1, x_2) = d(x_1, x) + d(x, x_2) = 2t$ from which it follows that $d(y_1, y_2) \ge \pi$, contrary to the assumption that $d(y_1, y_2) < \pi$. Thus, the projection $\pi \colon C_{\kappa}Y \to Y$, $sy \mapsto y$ is well defined, and we claim that $\pi([x_1, x_2]) = [y_1, y_2]$ is a geodesic segment. For this it suffices to prove that $d(y_1, y_2) = d(y_1, y) + d(y, y_2)$. Consider the comparison triangles $\overline{\Delta}_1(0, x, x_1)$ and $\overline{\Delta}_2(0, x, x_2)$ in M_{κ}^2 arranged so that $\overline{x_1}$ and $\overline{x_2}$ are on the opposite sides of the line $\overline{0x}$ in M_{κ}^2 . The vertex angles at $\overline{0}$ in $\overline{\Delta}_1$ and $\overline{\Delta}_2$ are $d(y, y_1)$ and $d(y, y_2)$, respectively. As,

$$d(\overline{x_1}, \overline{x}) + d(\overline{x}, \overline{x_2}) = d(x_1, x) + d(x, x_2) = d(x_1, x_2) < 2t = d(\overline{0}, \overline{x_1}) + d(\overline{0}, \overline{x_2}),$$
(1)

it follows that $d(y_1, y) + d(y, y_2) < \pi$, for if $d(y_1, y) + d(y, y_2) = \pi$, this contradicts (1). Let $\overline{\Delta}_3(0, x_1, x_2)$ be a κ -comparison triangle for $\Delta(0, x_1, x_2)$ with vertices $\widetilde{0}, \widetilde{x_1}$ and $\widetilde{x_2}$. Now, the angle at $\overline{0}$ is $d(y_1, y_2)$. Since

$$d(\overline{x_1}, \overline{x_2}) \le d(\overline{x_1}, \overline{x}) + d(\overline{x}, \overline{x_2}) = d(x_1, x) + d(x, x_2) = d(x_1, x_2) = d(\widetilde{x_1}, \widetilde{x_2}),$$

it follows by the law of cosines that $d(y_1, y) + d(y, y_2) \le d(y_1, y_2)$. On the other hand, $d(y_1, y_2) \le d(y_1, y) + d(y, y_2)$, and the claim follows.

Exercise 4. Let Y be a length space and $\kappa \in \mathbb{R}$. Show that $C_{\kappa}Y$ is a length space.

Proof. Let $x_1 = t_1y_1$ and $x_2 = t_2y_2$ be points in $C_{\kappa}Y$. If $t_1 = 0$, then $d(x_1, x_2) = t_2$ and the path $\gamma_2 \colon [0, t_2] \to C_{\kappa}Y$ given by $\gamma_2(t) = ty_2$ is the unique geodesic from 0 to x_2 . Similarly, if $d(y_1, y_2) \ge \pi$, then $d(x_1, x_2) = t_1 + t_2$ and the unique geodesic connecting x_1 to x_2 is the concatenation of the unique geodesic $\gamma_1 \colon x_1 \curvearrowright 0$ of length t_1 and $\gamma_2 \colon 0 \curvearrowright x_2$ of length t_2 . Thus, we may assume $d(y_1, y_2) < \pi$. Since Y is a length space there exists a path $\alpha_{\varepsilon} \colon [0, \ell(\alpha_{\varepsilon})] \to Y$, parametrized by arclength $\alpha_{\varepsilon} \colon y_1 \curvearrowright y_2$ such that $\ell(\alpha_{\varepsilon}) \le d(y_1, y_2) + \varepsilon < \pi$. Now, let $A_{\varepsilon} \subset \mathbb{S}^1$ be an arc of length $\ell(\alpha_{\varepsilon})$, and consider the (truncated) sector

$$S_{\varepsilon} = \{ (r, u) \in [0, \infty) \times \mathbb{S}^1 \colon u \in A_{\varepsilon}, \ 0 \le r \le D_{\kappa}/2 \} \subseteq \mathbb{R}^2,$$

where (r, u) are geodesic polar coordinates for x in M_{κ}^2 given by the inverse of the exponential map $\exp_o: T_o(M_{\kappa}^2) \cong [0, \infty) \times \mathbb{S}^1 \to M_{\kappa}^2$. Here $u = \dot{\gamma}^{o,x}(0)$ is the unit initial vector of the geodesic γ from o to $x = \gamma^{o,x}(r)$, c.f. Bridson Haefliger I.6.16. Define

$$F\colon S_{\varepsilon}\to C_{\kappa}Y,$$

 $(r, u) \mapsto r\alpha_{\varepsilon}(u)$. Now, F is an isometric embedding from S_{ε} with the induced metric from M_{κ}^2 onto $C_{\kappa}\alpha_{\varepsilon}([0, \ell(\alpha_{\varepsilon})])$ with the intrinsic metric d_s induced by the cone metric. To see this, first note that its image is the subcone $C_{\kappa}\alpha_{\varepsilon}([0, \ell(\alpha_{\varepsilon})])$. Equip the subcone with the intrinsic metric d_s . Now, for $\kappa = 0$

$$d(F(r, u), F(r', u'))^{2} = r^{2} + r'^{2} - 2rr' \cos(d_{s\pi}(\alpha_{\varepsilon}(u), \alpha_{\varepsilon}(u')))$$

$$= r^{2} + r'^{2} - 2rr' \cos(d_{\pi}(u, u'))$$

$$= r^{2} + r'^{2} - 2rr' \cos(d(u, u'))$$

$$= d((r, u), (r', u'))^{2}.$$

For $\kappa < 0$

$$\begin{aligned} \cosh(\sqrt{-\kappa}d(F(r,u),F(r',u'))) &= \cosh(\sqrt{-\kappa}r)\cosh(\sqrt{-\kappa}r') \\ &- \sinh(\sqrt{-\kappa}r)\sinh(\sqrt{-\kappa}r')\cos(d_{s\,\pi}(\alpha_{\varepsilon}(u),\alpha_{\varepsilon}(u'))) \\ &= \cosh(\sqrt{-\kappa}r)\cosh(\sqrt{-\kappa}r') \\ &- \sinh(\sqrt{-\kappa}r)\sinh(\sqrt{-\kappa}r')\cos(d_{\pi}(u,u')) \\ &= \cosh(\sqrt{-\kappa}d((r,u),(r',u'))). \end{aligned}$$

And, similarly, for $\kappa > 0$. Hence, F is an isometry onto $C_{\kappa}\alpha_{\varepsilon}([0, \ell(\alpha_{\varepsilon})])$. Since M_{κ}^2 is D_{κ} -geodesic, there is a path in S_{ε} of length $d_s(x_1, x_2)$ (the intrinsic distance in $C_{\kappa}\alpha_{\varepsilon}([0, \ell(\alpha_{\varepsilon})])$) joining $F^{-1}(x_1)$ and $F^{-1}(x_2)$. Hence x_1 and x_2 can be joined by a path in $C_{\kappa}Y$ of length $d_s(x_1, x_2)$. However, as $F|_{\overline{B}(o,t_1+t_2)}$ is L_{ε} -bilipschitz and $L_{\varepsilon} \to 1$ as $\varepsilon \to 0$, we may join x_1 and x_2 in $C_{\kappa}Y$ by a path of length $\leq d(x_1, x_2) + \varepsilon'$ for every $\varepsilon' > 0$.

Exercise 5. Let (X, d) be a metric space of curvature $\leq \kappa$. For each $n \in \mathbb{N}^+$ we define a metric

$$d_n(x,y) = nd(x,y).$$

Prove that the tangent cone $C_0S_p(X)$ at $p \in X$ (and its completion) is a 4-point limit of the sequence (X, d_n) .

Proof. Fix a 4-tuple $(z_1, z_2, z_3, z_4) \in (C_0 S_p(X))^4$ and write $z_i = t_i \bar{x}_i$ where $\bar{x}_i \in S_p(X)$, and choose a representative $[p, x_i] \subseteq U$ of \bar{x}_i , where U is a $CAT(\kappa)$ neighbourhood of p. We claim that there exists 4-tuples $(x_1(n), x_2(n), x_3(n), x_4(n)) \in (X, d_n)^4$ such that

$$|d(z_i, z_j) - d_n(x_i(n), x_j(n))| \to 0,$$

for all $1 \leq i, j \leq 4$ along a subsequence. First, assume $\kappa = 0$. Now,

$$d(z_i, z_j)^2 = t_i^2 + t_j^2 - 2t_i t_j \cos(\angle_p([p, x_i], [p, x_j]))$$

since $d_{\pi}(\bar{x}_i, \bar{x}_j) = \min\{\pi, \angle_p([p, x_i], [p, x_j])\} = \angle_p([p, x_i], [p, x_j])$, the Alexandrov angle with respect to the comparison angles in (X, d). Observe that the Alexandrov angle exists in strong sense, Exercise 8.4. Now choose $x_i(n) \in [p, x_i] \subseteq X$ such that $d_n(p, x_i(n)) = t_i$. Now, for the comparison angle between $x_i(n)$ and $x_j(n)$ at p,

$$d_n(x_i(n), x_j(n))^2 = d_n(p, x_i(n))^2 + d_n(p, x_j(n))^2 - 2d_n(p, x_i(n))d_n(p, x_j(n)) \cos \overline{\angle}_p(x_i(n), x_j(n)),$$

in other words

$$d_n(x_i(n), x_j(n))^2 = t_i^2 + t_j^2 - 2t_i t_j \cos \mathbb{Z}_p(x_i(n), x_j(n))$$

and so

$$\lim_{n \to \infty} d_n (x_i(n), x_j(n))^2 = t_i^2 + t_j^2 - 2t_i t_j \cos \angle_p ([p, x_i], [p, x_j]) = d(z_i, z_j),$$

since $\lim_{n\to\infty} \overline{\angle}_p(x_i(n), x_j(n)) = \angle_p([p, x_i], [p, x_j])$ as the Alexandrov angle exists in strong sense, and the comparison angle $\overline{\angle}_p(x_i(n), x_j(n))$ in (X, d_n) is the same as the corresponding comparison angle in (X, d) since $d_n(x, y) = nd(x, y)$. Similarly for $\kappa \neq 0$, using the spheric and hyperbolic law of cosines instead. \Box