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Exercise 1. Prove that the k-cone CY over a metric space is complete if and
only if Y is complete.

Proof. Assume C,Y is complete and let (y,) be a Cauchy sequence in Y. Set
Zpn = toyn where 0 < t9 < D, /2 and note that d(0, z,) = to for all n. We claim
that (z,,) is a Cauchy sequence in C,Y. There are three cases:

k=0.
d(xma zn)z = t(% + t% - th COS(dﬂ(ym, yn)) — 0,

as cos(dx (Ym, Yn)) — 1 since dy (Ym, yn) — 0 by assumption.

r < 0.

cosh(v/—kd(m, ) = cosh?(vV/—ktg) — sinh? (v—ktg) cosh(dx (Ym, Yn))
— cosh?(v/—kty) — sinh?(v/—ktg) = 1,

and it follows that d(z,, z,) — 0.

k> 0.

cos(V/Rd(m, ) = cos*(Vkto) + sin® (v/kto) cos(dr (Ym, Yn))
— cos? (y/kto) + sin?(Vktg) = 1,

and it follows that d(z,,z,) — 0.

Hence, (x,,) is a Cauchy sequence in C,Y, and by completeness converges to a
point at distance to from the vertex of the cone, say x = tgy. In other words,
toyn — toy, and by the definition of the cone metric y, — y. Thus, Y is
complete. Conversely, assume Y is complete and let (z,) = (t,y,) be a Cauchy
sequence in CY which does not converge to 0. Since C,Y is a metric space
{z,} is bounded and eventually contained in a ball of finite radius centred at
the vertex of the cone, 0. In other words d(z,,0) < r < oo, and writing out
the cone metric in all the three cases we see that the sequence (t,,) is bounded.
Thus, the sequence (t,) has a subsequence (t,,) converging to ¢’ # 0. Consider
the case k = 0. Now

d(Tm,, Tn,) = ffn,; + tii — 2ty €OS(dx (Y Uny ),
and

A(Zm,, Tn,) — 2 by, 247
lim Cos(dﬂ(ymi,ym)) — lim (I men,) mitng - 1.

MG, MG —>00 M4, —> 00 _2tmztn1 2tl2

Similarly for k # 0. Hence, (y,,) is a Cauchy sequence, and by completeness
Yn, — y. Thus, the sequence (x,,) = (t,y.) has a converging subsequence,
(tn,yn,) converging to t'y, and it follows that C,Y is complete. O

Exercise 2. Let Y be a metric space, Y its completion, and k € R. Prove that
C.Y =C.Y.



Proof. By Theorem 1.31. there exists isometric embeddings
Y=Y
g: C.Y = C.Y.

Let

h:C.Y = C.Y,
be defined point-wise as
h(z) = li_>m g(tyn),

where x =t and § = lim,, o0 f(yn), yn € Y. In particular, note that h is well
defined since CY is complete. The claim now follows if & is an isometry. First
note that h is surjective since Im g is dense in CY . For x1 = t141, T2 = tays €
C.Y

d(h(z1), hM(x2)) = d( im g(tyin), lim g(tyzn)) = lim d(g(tyin), 9(tyzn))
n—o0 n—oo n—o0
= lim d(tyin, tyan) = lm d(tf(yin), tf(y2n)) = d(tyn, ty2)
= d(.’L‘l, :EQ)u

where the third equality follows since g is an isometric embedding into CyY', and
similarly the fourth equality follows from the definition of the cone metric and
the fact that f is an isometric embedding into Y. Thus, h is an isometry. [

Exercise 3. Suppose that the k-cone C.Y over a metric space Y is a CAT(k)-
space. Prove that for each pair of points y1,y2 € Y with d(y1,y2) < 7 there
exists a unique geodesic segment in Y joining y1 and ys.

Proof. Since CY is a C AT (k)-space, by Corollary 3.28 it follows that a neigh-
bourhood of the vertex 0 € C,Y is a C AT (k)-space, and so by Theorem 3.12(3)
the cone point 0 has a convex neighbourhood. So, for small enough ¢, 1 = ty;
and xo = tys can be joined with a unique geodesic segment, [z1, z2]. We claim
that this projects to the unique geodesic segment [y, ys] joining y; and ys
in Y. Towards this, let * = sy € [z1,22], then s > 0, since if s = 0 then
d(x1,x9) = d(x1,x)+d(x, x2) = 2t from which it follows that d(y1,y2) > , con-
trary to the assumption that d(y1,y2) < w. Thus, the projection 7: C,Y — Y,
sy — y is well defined, and we claim that 7([x1,z2]) = [y1, y2] is a geodesic seg-
ment. For this it suffices to prove that d(y1,y2) = d(y1,y) + d(y, y2). Consider
the comparison triangles A, (0,z,2;) and Ay(0,z,23) in M2 arranged so that
71 and 73 are on the opposite sides of the line 0F in M?2. The vertex angles at
0in A, and A, are d(y,y1) and d(y, y2), respectively. As,

d(z1,7) + d(T,T3) = d(x1,x) + d(x, 22) = d(z1,22) < 2t = d(0,77) + d(0,T2),
(1)
it follows that d(y1, y)+d(y, y2) < 7, for if d(y1, y)+d(y, y2) = =, this contradicts

(1). Let Ag(0,21,22) be a k-comparison triangle for A(0, z1,22) with vertices
0,71 and Z3. Now, the angle at 0 is d(y1,y2). Since

d(T1,72) < d(T1,7) + d(T, T2) = d(21,2) + d(z, 22) = d(21, 32) = d(771, 22),

it follows by the law of cosines that d(y1,y) + d(y, y2) < d(y1,y2). On the other
hand, d(y1,y2) < d(y1,y) + d(y,y2), and the claim follows. O



Exercise 4. Let Y be a length space and k € R. Show that CY is a length
space.

Proof. Let x1 = t1y1 and o = toys be points in CY. If ¢4 = 0, then d(z1,22) =
to and the path v5: [0,t2] — C.Y given by 42(t) = tys is the unique geodesic
from 0 to z5. Similarly, if d(y1,y2) > 7, then d(z1,22) = t; + t2 and the
unique geodesic connecting x1 to xo is the concatenation of the unique geodesic
v1: x1 ~ 0 of length ¢; and v2: 0 ~ z9 of length ¢5. Thus, we may assume
d(y1,y2) < 7. Since Y is a length space there exists a path a.: [0,¢(a:)] — Y,
parametrized by arclength a.: y; ~ yo such that f(a.) < d(y1,y2) +¢€ < 7.
Now, let A. C S! be an arc of length /(c), and consider the (truncated) sector

S. ={(r,u) €[0,00) x S': u € A, 0 <r < D,/2} C R?,

where (r,u) are geodesic polar coordinates for z in M2 given by the inverse of
the exponential map exp,: T,(M2) = [0,00) x S' — M?2. Here u = 4°%(0)
is the unit initial vector of the geodesic v from o to x = y**(r), c.f. Bridson
Haefliger 1.6.16. Define

F: S — CLY,

(ryu) — rae(u). Now, F is an isometric embedding from S. with the induced
metric from M2 onto Cyac ([0, £(cr.)]) with the intrinsic metric ds induced by the
cone metric. To see this, first note that its image is the subcone Cy . ([0, £(ac)]).
Equip the subcone with the intrinsic metric ds. Now, for kK =0

d(F(r,u), F(r',u/)? =r? + % oy cos(dg (e (u), ac(u')))
=72 407 —2py’ cos(dy(u,u’))

(u, )

d
=247 — 2r’ cos(d
=d((r,u), (', u))*.
For k <0
cosh(v/—rd(F(r,u), F(r',u'))) = cosh(v/—kr) cosh(v/—rr')
— sinh(v/—#7) sinh(v/—kr") cos(ds (e (u), ac(u')))
= cosh(v/—kr) cosh(v/—kr")
— sinh(v/—#r) sinh(v/—kr") cos(dy (u, u"))
= cosh(v/—kd((r,u), (r',u"))).
And, similarly, for k > 0. Hence, F' is an isometry onto Cya.([0, £(c.)]). Since
M? is D,-geodesic, there is a path in S. of length dg(z1,22) (the intrinsic
distance in Cra.([0,4()])) joining F~1(z1) and F~1(x3). Hence z; and
can be joined by a path in CY of length ds(x1,x2). However, as F|§(07t1+t2) is
L.-bilipschitz and L. — 1 as ¢ — 0, we may join z; and x2 in CY by a path
of length < d(x1,x2) + € for every & > 0.
O

Exercise 5. Let (X,d) be a metric space of curvature < k. For each n € NT
we define a metric

dn(ma y) = nd(:z:, y)
Prove that the tangent cone CoSp(X) at p € X (and its completion) is a 4-point
limit of the sequence (X,d,,).



Proof. Fix a 4-tuple (21, 29, 23, 24) € (COSP(X))4 and write z; = t;Z; where T; €
Sp(X), and choose a representative [p, x;] C U of &;, where U is a C AT (k) neigh-
bourhood of p. We claim that there exists 4-tuples (z1(n), x2(n), z3(n), z4(n)) €
(X, d,)* such that

|d(zi, 2;) = dn(2i(n), z5(n))| =0,

for all 1 <i,j5 <4 along a subsequence. First, assume x = 0. Now,
d(zi,25)% = t7 + 15 — 2t:t; cos(Zp([p, i, [p, 75]))

since dr(%;,%;) = min{nm, Z,([p, x|, [p,z;])} = Zp([p, zi], [p, z;]), the Alexan-
drov angle with respect to the comparison angles in (X,d). Observe that the
Alexandrov angle exists in strong sense, Exercise 8.4. Now choose z;(n) €
[p, z;] C X such that d,,(p,z;(n)) = t;. Now, for the comparison angle between
z;(n) and z;(n) at p,

dn(xz(n)a xj(n))Q :dn(pa xi(n))Q + dn(p7 €Ly (n))2
= 2dn(p, %i(n))dn (p, 25 (n)) cos Zy(wi(n), 25 (n)),

in other words
dn(zi(n), x5 (n))? = t7 + 5 — 2t5t; cos Zp(xi(n), x5 (n)),
and so

lim dn(wl(n)vxj(n))z = t? + t? - Qtitj cos AP([pv mi]a [pa x]]) = d(Z“ Zj)a

n—oo

since lim,, 00 Zp(xi(n), 2j(n)) = Zp([p, zi], [p, x;]) as the Alexandrov angle ex-
ists in strong sense, and the comparison angle Z,(z;(n),z;(n)) in (X, d,) is the
same as the corresponding comparison angle in (X, d) since d,(x,y) = nd(z,y).
Similarly for k # 0, using the spheric and hyperbolic law of cosines instead. [



