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Exercise 1. Prove that the κ-cone CκY over a metric space is complete if and
only if Y is complete.

Proof. Assume CκY is complete and let (yn) be a Cauchy sequence in Y . Set
xn = t0yn where 0 < t0 ≤ Dκ/2 and note that d(0, xn) = t0 for all n. We claim
that (xn) is a Cauchy sequence in CκY . There are three cases:

κ = 0.
d(xm, xn)2 = t20 + t20 − 2t20 cos(dπ(ym, yn))→ 0,

as cos(dπ(ym, yn))→ 1 since dπ(ym, yn)→ 0 by assumption.

κ < 0.

cosh(
√
−κd(xm, xn)) = cosh2(

√
−κt0)− sinh2(

√
−κt0) cosh(dπ(ym, yn))

→ cosh2(
√
−κt0)− sinh2(

√
−κt0) = 1,

and it follows that d(xm, xn)→ 0.

κ > 0.

cos(
√
κd(xm, xn)) = cos2(

√
κt0) + sin2(

√
κt0) cos(dπ(ym, yn))

→ cos2(
√
κt0) + sin2(

√
κt0) = 1,

and it follows that d(xm, xn)→ 0.
Hence, (xn) is a Cauchy sequence in CκY , and by completeness converges to a
point at distance t0 from the vertex of the cone, say x = t0y. In other words,
t0yn → t0y, and by the definition of the cone metric yn → y. Thus, Y is
complete. Conversely, assume Y is complete and let (xn) = (tnyn) be a Cauchy
sequence in CκY which does not converge to 0. Since CκY is a metric space
{xn} is bounded and eventually contained in a ball of finite radius centred at
the vertex of the cone, 0. In other words d(xn, 0) ≤ r < ∞, and writing out
the cone metric in all the three cases we see that the sequence (tn) is bounded.
Thus, the sequence (tn) has a subsequence (tni

) converging to t′ 6= 0. Consider
the case κ = 0. Now

d(xmi
, xni

) = t2mi
+ t2ni

− 2tmi
tni

cos(dπ(ymi
, yni

)),

and

lim
mi,ni→∞

cos(dπ(ymi
, yni

)) = lim
mi,ni→∞

d(xmi
, xni

)− 2tmi
tni

−2tmitni

=
2t′

2

2t′2
= 1.

Similarly for κ 6= 0. Hence, (yni) is a Cauchy sequence, and by completeness
yni
→ y. Thus, the sequence (xn) = (tnyn) has a converging subsequence,

(tni
yni

) converging to t′y, and it follows that CκY is complete.

Exercise 2. Let Y be a metric space, Y its completion, and κ ∈ R. Prove that
CκY ∼= CκY .
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Proof. By Theorem 1.31. there exists isometric embeddings

f : Y → Y

g : CκY → CκY .

Let
h : CκY → CκY ,

be defined point-wise as
h(x) = lim

n→∞
g(tyn),

where x = ty and y = limn→∞ f(yn), yn ∈ Y . In particular, note that h is well
defined since CκY is complete. The claim now follows if h is an isometry. First
note that h is surjective since Im g is dense in CκY . For x1 = t1ȳ1, x2 = t2ȳ2 ∈
CκY

d(h(x1), h(x2)) = d( lim
n→∞

g(ty1n), lim
n→∞

g(ty2n)) = lim
n→∞

d(g(ty1n), g(ty2n))

= lim
n→∞

d(ty1n, ty2n) = lim
n→∞

d(tf(y1n), tf(y2n)) = d(tȳ1, tȳ2)

= d(x1, x2),

where the third equality follows since g is an isometric embedding into CκY , and
similarly the fourth equality follows from the definition of the cone metric and
the fact that f is an isometric embedding into Y . Thus, h is an isometry.

Exercise 3. Suppose that the κ-cone CκY over a metric space Y is a CAT (κ)-
space. Prove that for each pair of points y1, y2 ∈ Y with d(y1, y2) < π there
exists a unique geodesic segment in Y joining y1 and y2.

Proof. Since CκY is a CAT (κ)-space, by Corollary 3.28 it follows that a neigh-
bourhood of the vertex 0 ∈ CκY is a CAT (κ)-space, and so by Theorem 3.12(3)
the cone point 0 has a convex neighbourhood. So, for small enough t, x1 = ty1
and x2 = ty2 can be joined with a unique geodesic segment, [x1, x2]. We claim
that this projects to the unique geodesic segment [y1, y2] joining y1 and y2
in Y . Towards this, let x = sy ∈ [x1, x2], then s > 0, since if s = 0 then
d(x1, x2) = d(x1, x)+d(x, x2) = 2t from which it follows that d(y1, y2) ≥ π, con-
trary to the assumption that d(y1, y2) < π. Thus, the projection π : CκY → Y ,
sy 7→ y is well defined, and we claim that π([x1, x2]) = [y1, y2] is a geodesic seg-
ment. For this it suffices to prove that d(y1, y2) = d(y1, y) + d(y, y2). Consider
the comparison triangles 41(0, x, x1) and 42(0, x, x2) in M2

κ arranged so that
x1 and x2 are on the opposite sides of the line 0x in M2

κ . The vertex angles at
0 in 41 and 42 are d(y, y1) and d(y, y2), respectively. As,

d(x1, x) + d(x, x2) = d(x1, x) + d(x, x2) = d(x1, x2) < 2t = d(0, x1) + d(0, x2),
(1)

it follows that d(y1, y)+d(y, y2) < π, for if d(y1, y)+d(y, y2) = π, this contradicts
(1). Let 43(0, x1, x2) be a κ-comparison triangle for 4(0, x1, x2) with vertices
0̃, x̃1 and x̃2. Now, the angle at 0 is d(y1, y2). Since

d(x1, x2) ≤ d(x1, x) + d(x, x2) = d(x1, x) + d(x, x2) = d(x1, x2) = d(x̃1, x̃2),

it follows by the law of cosines that d(y1, y) + d(y, y2) ≤ d(y1, y2). On the other
hand, d(y1, y2) ≤ d(y1, y) + d(y, y2), and the claim follows.
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Exercise 4. Let Y be a length space and κ ∈ R. Show that CκY is a length
space.

Proof. Let x1 = t1y1 and x2 = t2y2 be points in CκY . If t1 = 0, then d(x1, x2) =
t2 and the path γ2 : [0, t2] → CκY given by γ2(t) = ty2 is the unique geodesic
from 0 to x2. Similarly, if d(y1, y2) ≥ π, then d(x1, x2) = t1 + t2 and the
unique geodesic connecting x1 to x2 is the concatenation of the unique geodesic
γ1 : x1 y 0 of length t1 and γ2 : 0 y x2 of length t2. Thus, we may assume
d(y1, y2) < π. Since Y is a length space there exists a path αε : [0, `(αε)]→ Y ,
parametrized by arclength αε : y1 y y2 such that `(αε) ≤ d(y1, y2) + ε < π.
Now, let Aε ⊂ S1 be an arc of length `(αε), and consider the (truncated) sector

Sε = {(r, u) ∈ [0,∞)× S1 : u ∈ Aε, 0 ≤ r ≤ Dκ/2} ⊆ R2,

where (r, u) are geodesic polar coordinates for x in M2
κ given by the inverse of

the exponential map expo : To(M
2
κ) ∼= [0,∞) × S1 → M2

κ . Here u = γ̇o,x(0)
is the unit initial vector of the geodesic γ from o to x = γo,x(r), c.f. Bridson
Haefliger I.6.16. Define

F : Sε → CκY,

(r, u) 7→ rαε(u). Now, F is an isometric embedding from Sε with the induced
metric from M2

κ onto Cκαε([0, `(αε)]) with the intrinsic metric ds induced by the
cone metric. To see this, first note that its image is the subcone Cκαε([0, `(αε)]).
Equip the subcone with the intrinsic metric ds. Now, for κ = 0

d(F (r, u), F (r′, u′))2 = r2 + r′
2 − 2rr′ cos(dsπ(αε(u), αε(u

′)))

= r2 + r′
2 − 2rr′ cos(dπ(u, u′))

= r2 + r′
2 − 2rr′ cos(d(u, u′))

= d((r, u), (r′, u′))2.

For κ < 0

cosh(
√
−κd(F (r, u), F (r′, u′))) = cosh(

√
−κr) cosh(

√
−κr′)

− sinh(
√
−κr) sinh(

√
−κr′) cos(dsπ(αε(u), αε(u

′)))

= cosh(
√
−κr) cosh(

√
−κr′)

− sinh(
√
−κr) sinh(

√
−κr′) cos(dπ(u, u′))

= cosh(
√
−κd((r, u), (r′, u′))).

And, similarly, for κ > 0. Hence, F is an isometry onto Cκαε([0, `(αε)]). Since
M2
κ is Dκ-geodesic, there is a path in Sε of length ds(x1, x2) (the intrinsic

distance in Cκαε([0, `(αε)])) joining F−1(x1) and F−1(x2). Hence x1 and x2
can be joined by a path in CκY of length ds(x1, x2). However, as F |B(o,t1+t2)

is
Lε-bilipschitz and Lε → 1 as ε → 0, we may join x1 and x2 in CκY by a path
of length ≤ d(x1, x2) + ε′ for every ε′ > 0.

Exercise 5. Let (X, d) be a metric space of curvature ≤ κ. For each n ∈ N+

we define a metric
dn(x, y) = nd(x, y).

Prove that the tangent cone C0Sp(X) at p ∈ X (and its completion) is a 4-point
limit of the sequence (X, dn).
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Proof. Fix a 4-tuple (z1, z2, z3, z4) ∈ (C0Sp(X))4 and write zi = tix̄i where x̄i ∈
Sp(X), and choose a representative [p, xi] ⊆ U of x̄i, where U is a CAT (κ) neigh-
bourhood of p. We claim that there exists 4-tuples (x1(n), x2(n), x3(n), x4(n)) ∈
(X, dn)4 such that

|d(zi, zj)− dn(xi(n), xj(n))| → 0,

for all 1 ≤ i, j ≤ 4 along a subsequence. First, assume κ = 0. Now,

d(zi, zj)
2 = t2i + t2j − 2titj cos(∠p([p, xi], [p, xj ]))

since dπ(x̄i, x̄j) = min{π,∠p([p, xi], [p, xj ])} = ∠p([p, xi], [p, xj ]), the Alexan-
drov angle with respect to the comparison angles in (X, d). Observe that the
Alexandrov angle exists in strong sense, Exercise 8.4. Now choose xi(n) ∈
[p, xi] ⊆ X such that dn(p, xi(n)) = ti. Now, for the comparison angle between
xi(n) and xj(n) at p,

dn(xi(n), xj(n))2 =dn(p, xi(n))2 + dn(p, xj(n))2

− 2dn(p, xi(n))dn(p, xj(n)) cos∠p(xi(n), xj(n)),

in other words

dn(xi(n), xj(n))2 = t2i + t2j − 2titj cos∠p(xi(n), xj(n)),

and so

lim
n→∞

dn(xi(n), xj(n))2 = t2i + t2j − 2titj cos∠p([p, xi], [p, xj ]) = d(zi, zj),

since limn→∞ ∠p(xi(n), xj(n)) = ∠p([p, xi], [p, xj ]) as the Alexandrov angle ex-
ists in strong sense, and the comparison angle ∠p(xi(n), xj(n)) in (X, dn) is the
same as the corresponding comparison angle in (X, d) since dn(x, y) = nd(x, y).
Similarly for κ 6= 0, using the spheric and hyperbolic law of cosines instead.
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