Metric Geometry Fall 2013 HW 8 (JK)

Exercise 1. Prove that the product $X_1 \times X_2$ of CAT(0)-spaces X_1 and X_2 is a CAT(0)-space.

Proof. Recall that by the product metric space $X_1 \times X_2$ we mean the metric space with metric $d((x_1, x_2), (y_1, y_2))^2 = d(x_1, y_1)^2 + d(x_2, y_2)^2$. Now since X_1 and X_2 are CAT(0), they are in particular geodesic, so $X_1 \times X_2$ is geodesic. Hence, by Exercise 7.2, it suffices to show that $X_1 \times X_2$ satisfies the CN inequality. Towards this, let $p = (p_1, p_2), q = (q_1, q_2), r = (r_1, r_2)$ and $m = (m_1, m_2)$ be points in $X_1 \times X_2$ such that

$$d(q,m)=d(r,m)=\frac{1}{2}d(q,r).$$

Then, by the product metric

$$d(q_i, m_i) = d(r_i, m_i) = \frac{1}{2}(q_i, r_i),$$

c.f. proof of Theorem 1.80(4). Now, since X_1 and X_2 satisfy the CN inequality, it follows that

$$\begin{aligned} d(p,q)^2 + d(p,r)^2 &= d(p_1,q_1)^2 + d(p_2,q_2)^2 + d(p_1,r_1)^2 + d(p_2,r_2)^2 \\ &\geq 2d(m_1,p_1)^2 + \frac{1}{2}d(q_1,r_1)^2 + 2d(m_2,p_2)^2 + \frac{1}{2}d(q_2,r_2)^2 \\ &= 2\left(d(m_1,p_1)^2 + d(m_2,p_2)^2\right) + \frac{1}{2}\left(d(q_1,r_1)^2 + d(q_2,r_2)^2\right) \\ &= 2d(m,p)^2 + \frac{1}{2}d(q,r)^2. \end{aligned}$$

Thus $X_1 \times X_2$ satisfies the CN inequality and the claim follows.

Even more is true, for $\kappa \geq 0$, $X_1 \times X_2$ is $CAT(\kappa)$ if and only if X_1 and X_2 are $CAT(\kappa)$.

Exercise 2. Let $X = \mathbb{R}^2 \setminus \{(x, y) \in \mathbb{R}^2 : x > 0, y > 0\}$ be equipped with the length metric associated to the induced metric from \mathbb{R}^2 . Prove that X is a CAT(0)-space.

Proof. First observe that X is a uniquely geodesic space. If the geodesic joining $x, y \in X$ in \mathbb{R}^2 lies entirely in X, then this is the unique geodesic joining x to y in X. Otherwise, it is the unique geodesic consisting of the concatenation of the geodesics in \mathbb{R}^2 joining x to 0 and 0 to y. Taking C = 0 in Alexandrov's Lemma 2.31, it then follows by the Characterization Theorem for $CAT(\kappa)$ -spaces, Theorem 3.2(4), that X is a CAT(0)-space.

Exercise 3. Let $X = \mathbb{R}^3 \setminus \{(x, y, z) \in \mathbb{R}^3 : x > 0, y > 0, z > 0\}$ be equipped with the length metric associated to the induced metric from \mathbb{R}^3 . Prove that X is not a CAT(0)-space.

Proof. Consider the geodesic triangle $\triangle(x, y, z) \subset X$ with vertices x = (1, 0, 0), y = (0, 1, 0) and z = (0, 0, 1). Let $\overline{\triangle}(x, y, z)$ be its 0-comparison triangle with vertices $\bar{x} = x$, $\bar{y} = y$ and $\bar{z} = z$. Take points $p \in [x, z]$ and $q \in [y, z]$. Now $d(\bar{p}, \bar{q}) \leq d(p, q)$, so by the Characterisation Theorem of $CAT(\kappa)$ -spaces, Theorem 3.2(2), X is not a CAT(0)-space.

Exercise 4. Let X be a $CAT(\kappa)$ -space. Suppose that $\alpha : [0,a] \to X$ and $\beta : [0,b] \to X$ are geodesics such that $\alpha(0) = p = \beta(0)$.

(a) Show that the κ -comparison angle

$$\angle_{p}^{(\kappa)}(\alpha(s),\beta(t))$$

is increasing in both s > 0 and t > 0.

(b) Show that the Alexandrov angle satisfies

$$\begin{split} \angle_p(\alpha,\beta) &= \lim_{s,t \to 0} \angle_p^{(\kappa)}(\alpha(s),\beta(t)) \\ &= \lim_{t \to 0} \angle_p^{(\kappa)}(\alpha(t),\beta(t)) \\ &= \lim_{t \to 0} 2 \arcsin \frac{1}{2t} d(\alpha(t),\beta(t)). \end{split}$$

Proof. (a) follows immediately from the Characterisation Theorem of $CAT(\kappa)$ -spaces, Theorem 3.2(3). By Theorem 2.22. we can take comparison triangles in M_{κ}^2 instead of \mathbb{R}^2 in the expression of the Alexandrov angle, so

where the last equality follows by restricting to a suitable subsequence. To prove the third equality in the claim, observe as above that

$$\angle_p(\alpha,\beta) = \lim_{t \to 0} \angle_p^{(0)}(\alpha(t),\beta(t)),$$

and consider the comparison triangle $\overline{\Delta}(\overline{p}, \overline{\alpha(t)}, \overline{\beta(t)}) \subset \mathbb{R}^2$. Since the comparison triangle is isosceles,

$$\sin \angle_p^{(0)}(\alpha(t),\beta(t))/2 = \frac{d(\overline{\alpha(t)},\overline{\beta(t)})}{2t} = \frac{d(\alpha(t),\beta(t))}{2t},$$

bisecting the angle at \bar{p} in the plane. In other words,

$$\angle_p^{(0)}(\alpha(t),\beta(t)) = 2\arcsin\frac{1}{2t}d(\alpha(t),\beta(t)),$$

from which the claim now follows.

Exercise 5. Let X be a $CAT(\kappa)$ -space and $x, y \in X \setminus \{p\}$ with $\max\{d(p, x), d(p, y)\} < D_{\kappa}$. Prove that

- (a) $(p, x, y) \mapsto \angle_p([p, x][p, y])$ is upper semi-continuous, and
- (b) for fixed $p \in X$, $(x, y) \mapsto \angle_p([p, x], [p, y])$ is continuous.

Proof. (a) Let (x_n) , (y_n) , and (p_n) be sequences of points in X converging to x, y and p, respectively. Let c, c', c_n and c'_n be linear parametrizations $[0, 1] \to X$ of the geodesic segments $[p, x], [p, y], [p_n, x_n]$, and $[p_n, y_n]$ existing by assumption for large enough n. For $t \in (0, 1]$, let

$$\alpha(t) = \angle_p^{(\kappa)}(c(t), c'(t)),$$
$$\alpha_n(t) = \angle_p^{(\kappa)}(c_n(t), c'_n(t))$$

By Exercise 1, $\alpha(t)$ and $\alpha_n(t)$ are increasing functions of t and

$$\alpha = \angle_p([p, x], [p, y]) = \lim_{t \to 0} \alpha(t),$$

$$\alpha_n = \angle_{p_n}([p_n, x_n], [p_n, y_n]) = \lim_{t \to 0} \alpha_n(t)$$

We claim that $\limsup \alpha_n \leq \alpha$. Now, c.f. Theorem 3.12, $\alpha_n(t) \to \alpha(t)$ as $n \to \infty$. So, as α is the limit of $\alpha(t)$ as $t \to 0$, given $\varepsilon > 0$, let T > 0 be such that $\alpha(t) - \varepsilon/2 \leq \alpha$ for all $t \in (0, T]$. On the other hand, for big enough n, $\alpha_n(T) \leq \alpha(T) + \varepsilon/2$. So,

$$\alpha_n \le \alpha_n(T) \le \alpha(T) + \frac{\varepsilon}{2} \le \alpha + \varepsilon,$$

thus $\limsup \alpha_n \leq \alpha$, in other words

$$\limsup_{(p_n, x_n, y_n) \to (p, x, y)} \angle_{p_n} ([p_n, x_n], [p_n, y_n]) \le \angle_p ([p, x], [p, y])$$

and (a) follows. Keeping the above notation, now assuming $p_n = n$ for all n. Write $\beta_n = \angle_p([p, x], [p, x_n])$ and $\gamma_n = \angle_p([p, y], [p, y_n])$. By the Characterization theorem of $CAT(\kappa)$ -spaces 3.1(4), $\beta_n \to 0$ and $\gamma_n \to 0$ as $n \to \infty$. Thus, by the triangle inequality for Alexandrov angles, Theorem 2.17,

$$\angle_p([p,x],[p,y]) \le \angle_p([p,x],[p,x_n]) + \angle_p([p,x_n],[p,y_n]) + \angle_p([p,y_n],[p,y]),$$

 \mathbf{so}

$$\alpha \le \beta_n + \alpha_n + \gamma_n$$

from which it follows that

$$|\alpha - \alpha_n| \le \beta_n + \gamma_n.$$

Thus, $\lim_{n\to\infty} \alpha_n = \alpha$, in other words

$$\lim_{(x_n,y_n)\to(x,y)} \angle_p([p,x_n], [p,y_n]) = \angle_p([p,x], [p,y])$$

and (b) follows.