
Metric Geometry
Fall 2013
HW 8 (JK)

Exercise 1. Prove that the product X1 ×X2 of CAT (0)-spaces X1 and X2 is
a CAT (0)-space.

Proof. Recall that by the product metric space X1 × X2 we mean the metric
space with metric d((x1, x2), (y1, y2))2 = d(x1, y1)2 + d(x2, y2)2. Now since X1

and X2 are CAT (0), they are in particular geodesic, so X1 × X2 is geodesic.
Hence, by Exercise 7.2, it suffices to show that X1×X2 satisfies the CN inequal-
ity. Towards this, let p = (p1, p2), q = (q1, q2), r = (r1, r2) and m = (m1,m2)
be points in X1 ×X2 such that

d(q,m) = d(r,m) =
1

2
d(q, r).

Then, by the product metric

d(qi,mi) = d(ri,mi) =
1

2
(qi, ri),

c.f. proof of Theorem 1.80(4). Now, since X1 and X2 satisfy the CN inequality,
it follows that

d(p, q)2 + d(p, r)2 = d(p1, q1)2 + d(p2, q2)2 + d(p1, r1)2 + d(p2, r2)2

≥ 2d(m1, p1)2 +
1

2
d(q1, r1)2 + 2d(m2, p2)2 +

1

2
d(q2, r2)2

= 2
(
d(m1, p1)2 + d(m2, p2)2

)
+

1

2

(
d(q1, r1)2 + d(q2, r2)2

)
= 2d(m, p)2 +

1

2
d(q, r)2.

Thus X1 ×X2 satisfies the CN inequality and the claim follows.

Even more is true, for κ ≥ 0, X1 ×X2 is CAT (κ) if and only if X1 and X2

are CAT (κ).

Exercise 2. Let X = R2 \ {(x, y) ∈ R2 : x > 0, y > 0} be equipped with the
length metric associated to the induced metric from R2. Prove that X is a
CAT (0)-space.

Proof. First observe that X is a uniquely geodesic space. If the geodesic joining
x, y ∈ X in R2 lies entirely in X, then this is the unique geodesic joining x to
y in X. Otherwise, it is the unique geodesic consisting of the concatenation of
the geodesics in R2 joining x to 0 and 0 to y. Taking C = 0 in Alexandrov’s
Lemma 2.31, it then follows by the Characterization Theorem for CAT (κ)-
spaces, Theorem 3.2(4), that X is a CAT (0)-space.

Exercise 3. Let X = R3 \ {(x, y, z) ∈ R3 : x > 0, y > 0, z > 0} be equipped
with the length metric associated to the induced metric from R3. Prove that X
is not a CAT (0)-space.
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Proof. Consider the geodesic triangle 4(x, y, z) ⊂ X with vertices x = (1, 0, 0),
y = (0, 1, 0) and z = (0, 0, 1). Let 4(x, y, z) be its 0-comparison triangle with
vertices x̄ = x, ȳ = y and z̄ = z. Take points p ∈ [x, z] and q ∈ [y, z].
Now d(p̄, q̄) ≤ d(p, q), so by the Characterisation Theorem of CAT (κ)-spaces,
Theorem 3.2(2), X is not a CAT (0)-space.

Exercise 4. Let X be a CAT (κ)-space. Suppose that α : [0, a] → X and
β : [0, b]→ X are geodesics such that α(0) = p = β(0).

(a) Show that the κ-comparison angle

∠(κ)
p (α(s), β(t))

is increasing in both s > 0 and t > 0.

(b) Show that the Alexandrov angle satisfies

∠p(α, β) = lim
s,t→0

∠(κ)
p (α(s), β(t))

= lim
t→0

∠(κ)
p (α(t), β(t))

= lim
t→0

2 arcsin
1

2t
d(α(t), β(t)).

Proof. (a) follows immediately from the Characterisation Theorem of CAT (κ)-
spaces, Theorem 3.2(3). By Theorem 2.22. we can take comparison triangles in
M2
κ instead of R2 in the expression of the Alexandrov angle, so

∠p(α, β) = lim sup
s,t→0

∠(0)
p (α(s), β(t))2.22= lim sup

s,t→0
∠(κ)
p (α(s), β(t))

(a)
= lim
s,t→0

∠(κ)
p (α(s), β(t)) = lim

t→0
∠(κ)
p (α(t), β(t)),

where the last equality follows by restricting to a suitable subsequence. To prove
the third equality in the claim, observe as above that

∠p(α, β) = lim
t→0

∠(0)
p (α(t), β(t)),

and consider the comparison triangle 4(p̄, α(t), β(t)) ⊂ R2. Since the compari-
son triangle is isosceles,

sin∠(0)
p (α(t), β(t))/2 =

d(α(t), β(t))

2t
=
d(α(t), β(t))

2t
,

bisecting the angle at p̄ in the plane. In other words,

∠(0)
p (α(t), β(t)) = 2 arcsin

1

2t
d(α(t), β(t)),

from which the claim now follows.

Exercise 5. Let X be a CAT (κ)-space and x, y ∈ X\{p} with max{d(p, x), d(p, y)} <
Dκ. Prove that
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(a) (p, x, y) 7→ ∠p([p, x][p, y]) is upper semi-continuous, and

(b) for fixed p ∈ X, (x, y) 7→ ∠p([p, x], [p, y]) is continuous.

Proof. (a) Let (xn), (yn), and (pn) be sequences of points in X converging to x, y
and p, respectively. Let c, c′, cn and c′n be linear parametrizations [0, 1]→ X of
the geodesic segments [p, x], [p, y], [pn, xn], and [pn, yn] existing by assumption
for large enough n. For t ∈ (0, 1], let

α(t) = ∠(κ)
p (c(t), c′(t)),

αn(t) = ∠(κ)
p (cn(t), c′n(t)).

By Exercise 1, α(t) and αn(t) are increasing functions of t and

α = ∠p([p, x], [p, y]) = lim
t→0

α(t),

αn = ∠pn([pn, xn], [pn, yn]) = lim
t→0

αn(t).

We claim that lim supαn ≤ α. Now, c.f. Theorem 3.12, αn(t) → α(t) as
n → ∞. So, as α is the limit of α(t) as t → 0, given ε > 0, let T > 0 be such
that α(t) − ε/2 ≤ α for all t ∈ (0, T ]. On the other hand, for big enough n,
αn(T ) ≤ α(T ) + ε/2. So,

αn ≤ αn(T ) ≤ α(T ) +
ε

2
≤ α+ ε,

thus lim supαn ≤ α, in other words

lim sup
(pn,xn,yn)→(p,x,y)

∠pn([pn, xn], [pn, yn]) ≤ ∠p([p, x], [p, y])

and (a) follows. Keeping the above notation, now assuming pn = n for all n.
Write βn = ∠p([p, x], [p, xn]) and γn = ∠p([p, y], [p, yn]). By the Characteriza-
tion theorem of CAT (κ)-spaces 3.1(4), βn → 0 and γn → 0 as n → ∞. Thus,
by the triangle inequality for Alexandrov angles, Theorem 2.17,

∠p([p, x], [p, y]) ≤ ∠p([p, x], [p, xn]) + ∠p([p, xn], [p, yn]) + ∠p([p, yn], [p, y]),

so
α ≤ βn + αn + γn

from which it follows that

|α− αn| ≤ βn + γn.

Thus, limn→∞ αn = α, in other words

lim
(xn,yn)→(x,y)

∠p([p, xn], [p, yn]) = ∠p([p, x], [p, y])

and (b) follows.

3


