Metric Geometry
Fall 2013
HW 8 (JK)
Exercise 1. Prove that the product $X_{1} \times X_{2}$ of $C A T(0)$-spaces X_{1} and X_{2} is a CAT(0)-space.

Proof. Recall that by the product metric space $X_{1} \times X_{2}$ we mean the metric space with metric $d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)^{2}=d\left(x_{1}, y_{1}\right)^{2}+d\left(x_{2}, y_{2}\right)^{2}$. Now since X_{1} and X_{2} are $C A T(0)$, they are in particular geodesic, so $X_{1} \times X_{2}$ is geodesic. Hence, by Exercise 7.2, it suffices to show that $X_{1} \times X_{2}$ satisfies the CN inequality. Towards this, let $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right), r=\left(r_{1}, r_{2}\right)$ and $m=\left(m_{1}, m_{2}\right)$ be points in $X_{1} \times X_{2}$ such that

$$
d(q, m)=d(r, m)=\frac{1}{2} d(q, r)
$$

Then, by the product metric

$$
d\left(q_{i}, m_{i}\right)=d\left(r_{i}, m_{i}\right)=\frac{1}{2}\left(q_{i}, r_{i}\right)
$$

c.f. proof of Theorem 1.80(4). Now, since X_{1} and X_{2} satisfy the CN inequality, it follows that

$$
\begin{aligned}
d(p, q)^{2}+d(p, r)^{2} & =d\left(p_{1}, q_{1}\right)^{2}+d\left(p_{2}, q_{2}\right)^{2}+d\left(p_{1}, r_{1}\right)^{2}+d\left(p_{2}, r_{2}\right)^{2} \\
& \geq 2 d\left(m_{1}, p_{1}\right)^{2}+\frac{1}{2} d\left(q_{1}, r_{1}\right)^{2}+2 d\left(m_{2}, p_{2}\right)^{2}+\frac{1}{2} d\left(q_{2}, r_{2}\right)^{2} \\
& =2\left(d\left(m_{1}, p_{1}\right)^{2}+d\left(m_{2}, p_{2}\right)^{2}\right)+\frac{1}{2}\left(d\left(q_{1}, r_{1}\right)^{2}+d\left(q_{2}, r_{2}\right)^{2}\right) \\
& =2 d(m, p)^{2}+\frac{1}{2} d(q, r)^{2} .
\end{aligned}
$$

Thus $X_{1} \times X_{2}$ satisfies the CN inequality and the claim follows.
Even more is true, for $\kappa \geq 0, X_{1} \times X_{2}$ is $C A T(\kappa)$ if and only if X_{1} and X_{2} are $C A T(\kappa)$.

Exercise 2. Let $X=\mathbb{R}^{2} \backslash\left\{(x, y) \in \mathbb{R}^{2}: x>0, y>0\right\}$ be equipped with the length metric associated to the induced metric from \mathbb{R}^{2}. Prove that X is a CAT(0)-space.

Proof. First observe that X is a uniquely geodesic space. If the geodesic joining $x, y \in X$ in \mathbb{R}^{2} lies entirely in X, then this is the unique geodesic joining x to y in X. Otherwise, it is the unique geodesic consisting of the concatenation of the geodesics in \mathbb{R}^{2} joining x to 0 and 0 to y. Taking $C=0$ in Alexandrov's Lemma 2.31, it then follows by the Characterization Theorem for $C A T(\kappa)$ spaces, Theorem 3.2(4), that X is a $C A T(0)$-space.

Exercise 3. Let $X=\mathbb{R}^{3} \backslash\left\{(x, y, z) \in \mathbb{R}^{3}: x>0, y>0, z>0\right\}$ be equipped with the length metric associated to the induced metric from \mathbb{R}^{3}. Prove that X is not a CAT(0)-space.

Proof．Consider the geodesic triangle $\triangle(x, y, z) \subset X$ with vertices $x=(1,0,0)$ ， $y=(0,1,0)$ and $z=(0,0,1)$ ．Let $\bar{\triangle}(x, y, z)$ be its 0 －comparison triangle with vertices $\bar{x}=x, \bar{y}=y$ and $\bar{z}=z$ ．Take points $p \in[x, z]$ and $q \in[y, z]$ ． Now $d(\bar{p}, \bar{q}) \leq d(p, q)$ ，so by the Characterisation Theorem of $C A T(\kappa)$－spaces， Theorem 3．2（2），X is not a $C A T(0)$－space．

Exercise 4．Let X be a CAT（ κ ）－space．Suppose that $\alpha:[0, a] \rightarrow X$ and $\beta:[0, b] \rightarrow X$ are geodesics such that $\alpha(0)=p=\beta(0)$ ．
（a）Show that the κ－comparison angle

$$
\angle_{p}^{(\kappa)}(\alpha(s), \beta(t))
$$

is increasing in both $s>0$ and $t>0$ ．
（b）Show that the Alexandrov angle satisfies

$$
\begin{aligned}
\angle_{p}(\alpha, \beta) & =\lim _{s, t \rightarrow 0} \angle_{p}^{(\kappa)}(\alpha(s), \beta(t)) \\
& =\lim _{t \rightarrow 0} \angle_{p}^{(\kappa)}(\alpha(t), \beta(t)) \\
& =\lim _{t \rightarrow 0} 2 \arcsin \frac{1}{2 t} d(\alpha(t), \beta(t))
\end{aligned}
$$

Proof．（a）follows immediately from the Characterisation Theorem of $C A T(\kappa)$－ spaces，Theorem 3．2（3）．By Theorem 2．22．we can take comparison triangles in M_{κ}^{2} instead of \mathbb{R}^{2} in the expression of the Alexandrov angle，so

$$
\begin{aligned}
厶_{p}(\alpha, \beta) & =\limsup _{s, t \rightarrow 0} 厶_{p}^{(0)}(\alpha(s), \beta(t))^{2.22} \\
= & \limsup _{s, t \rightarrow 0} \angle_{p}^{(\kappa)}(\alpha(s), \beta(t)) \\
& \stackrel{(a)}{=} \lim _{s, t \rightarrow 0} 厶_{p}^{(\kappa)}(\alpha(s), \beta(t))=\lim _{t \rightarrow 0} \angle_{p}^{(\kappa)}(\alpha(t), \beta(t)),
\end{aligned}
$$

where the last equality follows by restricting to a suitable subsequence．To prove the third equality in the claim，observe as above that

$$
\angle_{p}(\alpha, \beta)=\lim _{t \rightarrow 0} \angle_{p}^{(0)}(\alpha(t), \beta(t)),
$$

and consider the comparison triangle $\bar{\triangle}(\bar{p}, \overline{\alpha(t)}, \overline{\beta(t)}) \subset \mathbb{R}^{2}$ ．Since the compari－ son triangle is isosceles，

$$
\sin \angle_{p}^{(0)}(\alpha(t), \beta(t)) / 2=\frac{d(\overline{\alpha(t)}, \overline{\beta(t)})}{2 t}=\frac{d(\alpha(t), \beta(t))}{2 t}
$$

bisecting the angle at \bar{p} in the plane．In other words，

$$
\angle_{p}^{(0)}(\alpha(t), \beta(t))=2 \arcsin \frac{1}{2 t} d(\alpha(t), \beta(t))
$$

from which the claim now follows．

Exercise 5．Let X be a $C A T(\kappa)$－space and $x, y \in X \backslash\{p\}$ with $\max \{d(p, x), d(p, y)\}<$ D_{κ} ．Prove that
(a) $(p, x, y) \mapsto \angle_{p}([p, x][p, y])$ is upper semi-continuous, and
(b) for fixed $p \in X,(x, y) \mapsto \angle_{p}([p, x],[p, y])$ is continuous.

Proof. (a) Let $\left(x_{n}\right),\left(y_{n}\right)$, and $\left(p_{n}\right)$ be sequences of points in X converging to x, y and p, respectively. Let c, c^{\prime}, c_{n} and c_{n}^{\prime} be linear parametrizations $[0,1] \rightarrow X$ of the geodesic segments $[p, x],[p, y],\left[p_{n}, x_{n}\right]$, and $\left[p_{n}, y_{n}\right]$ existing by assumption for large enough n. For $t \in(0,1]$, let

$$
\begin{aligned}
\alpha(t) & =\angle_{p}^{(\kappa)}\left(c(t), c^{\prime}(t)\right) \\
\alpha_{n}(t) & =\angle_{p}^{(\kappa)}\left(c_{n}(t), c_{n}^{\prime}(t)\right)
\end{aligned}
$$

By Exercise 1, $\alpha(t)$ and $\alpha_{n}(t)$ are increasing functions of t and

$$
\begin{aligned}
\alpha & =\angle_{p}([p, x],[p, y])=\lim _{t \rightarrow 0} \alpha(t), \\
\alpha_{n} & =\angle_{p_{n}}\left(\left[p_{n}, x_{n}\right],\left[p_{n}, y_{n}\right]\right)=\lim _{t \rightarrow 0} \alpha_{n}(t) .
\end{aligned}
$$

We claim that $\lim \sup \alpha_{n} \leq \alpha$. Now, c.f. Theorem 3.12, $\alpha_{n}(t) \rightarrow \alpha(t)$ as $n \rightarrow \infty$. So, as α is the limit of $\alpha(t)$ as $t \rightarrow 0$, given $\varepsilon>0$, let $T>0$ be such that $\alpha(t)-\varepsilon / 2 \leq \alpha$ for all $t \in(0, T]$. On the other hand, for big enough n, $\alpha_{n}(T) \leq \alpha(T)+\varepsilon / 2$. So,

$$
\alpha_{n} \leq \alpha_{n}(T) \leq \alpha(T)+\frac{\varepsilon}{2} \leq \alpha+\varepsilon
$$

thus $\lim \sup \alpha_{n} \leq \alpha$, in other words

$$
\limsup _{\left(p_{n}, x_{n}, y_{n}\right) \rightarrow(p, x, y)} \angle_{p_{n}}\left(\left[p_{n}, x_{n}\right],\left[p_{n}, y_{n}\right]\right) \leq \angle_{p}([p, x],[p, y])
$$

and (a) follows. Keeping the above notation, now assuming $p_{n}=n$ for all n. Write $\beta_{n}=\angle_{p}\left([p, x],\left[p, x_{n}\right]\right)$ and $\gamma_{n}=\angle_{p}\left([p, y],\left[p, y_{n}\right]\right)$. By the Characterization theorem of $C A T(\kappa)$-spaces $3.1(4), \beta_{n} \rightarrow 0$ and $\gamma_{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus, by the triangle inequality for Alexandrov angles, Theorem 2.17,

$$
\angle_{p}([p, x],[p, y]) \leq \angle_{p}\left([p, x],\left[p, x_{n}\right]\right)+\angle_{p}\left(\left[p, x_{n}\right],\left[p, y_{n}\right]\right)+\angle_{p}\left(\left[p, y_{n}\right],[p, y]\right)
$$

so

$$
\alpha \leq \beta_{n}+\alpha_{n}+\gamma_{n}
$$

from which it follows that

$$
\left|\alpha-\alpha_{n}\right| \leq \beta_{n}+\gamma_{n}
$$

Thus, $\lim _{n \rightarrow \infty} \alpha_{n}=\alpha$, in other words

$$
\lim _{\left(x_{n}, y_{n}\right) \rightarrow(x, y)} \angle_{p}\left(\left[p, x_{n}\right],\left[p, y_{n}\right]\right)=\angle_{p}([p, x],[p, y])
$$

and (b) follows.

