Metric Geometry Fall 2013 HW 7 (JK)

Exercise 1. Prove that for every $\kappa \in \mathbb{R}$, $l < D_{\kappa}$ and $\varepsilon > 0$, there exists a constant $\delta = \delta(\kappa, l, \varepsilon)$ such that for all $x, y \in M_{\kappa}^2$, with $d(x, y) \leq l$, and for all $m' \in M_{\kappa}^2$, with

$$\max\{d(x, m'), d(y, m')\} < \frac{1}{2}d(x, y) + \delta,$$

we have $d(m, m') < \varepsilon$, where m is the midpoint of [x, y].

Proof. Since $l < D_{\kappa}$ and M_{κ}^2 is D_{κ} -geodesic, there exists a unique geodesic segment [x, y] joining x to y whenever $d(x, y) < D_{\kappa}$. First assume that the segment [x, y] is the initial segment of $[x, y_0]$ of length l as we want δ to depend on l, not d(x, y). Now, let $\delta_0 = \delta_0(\kappa, l, \varepsilon)$ be such that if

$$d(x,z) + d(z,y_0) < d(x,y_0) + \delta_0, \tag{1}$$

then dist $(z, [x, y_0]) < \varepsilon/3$, c.f. Exercise 6.4. For m' as above

$$\begin{aligned} d(x,m') + d(m',y_0) &\leq d(x,m') + d(m',y) + d(y,y_0) \\ &\leq \frac{1}{2}d(x,y) + \delta + \frac{1}{2}d(x,y) + \delta + d(y,y_0) \\ &= d(x,y) + d(y,y_0) + 2\delta \\ &= d(x,y_0) + 2\delta. \end{aligned}$$

Let $2\delta < \delta_0$, then by (1) it follows that $d(m', p) < \varepsilon/3$ for some $p \in [x, y_0]$, and hence

$$d(p,x) \le d(p,m') + d(m',x) \le \frac{\varepsilon}{3} + \frac{1}{2}d(x,y) + \delta,$$

$$d(p,y) \le d(p,m') + d(m',y) \le \frac{\varepsilon}{3} + \frac{1}{2}d(x,y) + \delta.$$

But $p \in [x, y_0]$, so $d(p, m) \leq \varepsilon/3 + \delta$, and

$$d(m, m') \le d(m, p) + d(p, m') \le \frac{\varepsilon}{3} + \delta + \frac{\varepsilon}{3},$$

and the claim follows taking $\delta \leq \varepsilon/3$.

The general case now follows observing that $\operatorname{Isom}(M_{\kappa}^2)$, mapping geodesics to geodesics, is finitely generated by reflections in hyperplanes, and acts transitively on equidistant pairs of points in M_{κ}^2 . Thus, there is no loss in generality assuming that $[x, y] \subseteq [x, y_0]$. To prove this, fix $k \in \mathbb{N}$ and consider 2k equidistant points $p_1, \ldots, p_k, q_1, \ldots, q_k$ in $M_{\kappa}^2, d(p_i, p_j) = d(q_i, q_j)$ and proceed by induction. Assume we have proved the claim for $i \leq k-1$. Hence, there exists an isometry $\varphi \colon M_{\kappa}^2 \to M_{\kappa}^2$ such that $\varphi(p_i) = q_i$ and φ is the composition of k-1 or fewer reflections. The latter follows since rescaling the metric does not alter the group of isometries, and for $d(p_i, p_j) = d(q_i, q_j)$ in \mathbb{H}^n , \mathbb{R}^n or \mathbb{R}^n , the isometry mapping p_i to q_i is precisely a reflection, r_{H_i} , through the hyperplane bisector H_i

of p_i and q_i (the set of points equidistant from p_i and q_i). Recall: a reflection through a hyperplane $H \subset \mathbb{R}^n$ is a map $r_H \colon \mathbb{R}^n \to \mathbb{R}^n$ defined point-wise by

$$r_H(x) = x - 2\langle x - p, u \rangle u \tag{2}$$

where $p \in H$ and $u \perp H$ a unit vector. A reflection in \mathbb{S}^n through a hyperplane $H \subset \mathbb{S}^n$ is obtained by considering the hyperplane in \mathbb{R}^{n+1} spanned by H and restricting the corresponding reflection to \mathbb{S}^n . A reflection in \mathbb{H} is similarly of the form (2), replacing $\langle \cdot, \cdot \rangle$ by $\langle \cdot, \cdot \rangle_{n,1}$ and taking $u \in p^{\perp}$. Going back to the proof: in the case $\varphi(p_k) = q_k$ we are done, so assume $\varphi(p_k) \neq q_k$. Let H_k be the hyperplane bisector of $\varphi(p_k)$ and q_k , and r_{H_k} a reflection through it. So, $d(q_i, \varphi(p_k)) = d(\varphi(p_i), \varphi(p_k)) = d(p_i, p_k) = d(q_i, q_k)$, and $q_i \in H_k$. Hence, it follows that $(r_{H_k} \circ \varphi)(p_i) = r_{H_k}(q_i) = q_i$ and $(r_{H_k} \circ \varphi)(p_k) = q_k$, where $r_{H_k} \circ \varphi$ is an isometry of at most k reflections through hyperplanes. The claim now follows by induction.

N.B. Exercise 1. completes the proof of Theorem 2.12.5. The fact that $\text{Isom}(M_{\kappa}^2)$ acts transitively on equidistant pairs of points in M_{κ}^2 was implicitly assumed in Theorem 3.21.

Exercise 2. Prove that a geodesic space X is a CAT(0)-space if and only if for all $p, q, r \in X$ and for all $m \in X$ with

$$d(q,m) = d(m,r) = \frac{1}{2}d(q,r),$$

we have

$$d(p,q)^{2} + d(p,r)^{2} \ge 2d(m,p)^{2} + \frac{1}{2}d(q,r)^{2}$$

known as the CN (Courbure Négative) inequality of Bruhat and Tits, or semiparallelogram law.

Proof. Let $q, r, m \in X$ be as above and $\overline{\Delta}(p, q, r)$ be a 0-comparison triangle for $\Delta(p, q, r)$ with vertices $\bar{p}, \bar{q}, \bar{r}$ and $\bar{m} \in [\bar{q}, \bar{r}]$ a comparison point of $m \in [q, r]$. Denote by α and β the vertex angles at \bar{m} in $\overline{\Delta}(\bar{p}, \bar{q}, \bar{m})$ and $\overline{\Delta}(\bar{p}, \bar{r}, \bar{m})$, respectively, noting that $\alpha + \beta = \pi$. Then, by the law, and sum, of cosines

$$\begin{aligned} d(p,q)^2 + d(p,r)^2 &= d(\bar{p},\bar{q})^2 + d(\bar{p},\bar{r})^2 \\ &= d(\bar{p},\bar{m})^2 + d(\bar{q},\bar{m})^2 - 2d(\bar{p},\bar{m})d(\bar{q},\bar{m})\cos\alpha \\ &+ d(\bar{p},\bar{m})^2 + d(\bar{r},\bar{m})^2 - 2d(\bar{p},\bar{m})d(\bar{r},\bar{m})\cos\beta \\ &= 2d(\bar{p},\bar{m})^2 + \frac{1}{2}d(q,r)^2 - d(\bar{p},\bar{m})d(q,r)(\cos\alpha - \cos\beta) \\ &= 2d(\bar{p},\bar{m})^2 + \frac{1}{2}d(q,r)^2 - 2d(\bar{p},\bar{m})d(q,r)\cos\left(\frac{\alpha + \beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right) \\ &= 2d(\bar{p},\bar{m})^2 + \frac{1}{2}d(q,r)^2 \end{aligned}$$

Assume X is CAT(0). Then, by the above the CN inequality holds,

$$d(p,q)^{2} + d(p,r)^{2} = 2d(\bar{p},\bar{m})^{2} + \frac{1}{2}d(q,r)^{2} \ge 2d(p,m)^{2} + \frac{1}{2}d(q,r).$$

On the other hand, if the CN inequality holds, then by the above

$$2d(\bar{p},\bar{m})^2 + \frac{1}{2}d(q,r)^2 = d(p,q)^2 + d(p,r)^2 \ge 2d(m,p)^2 + \frac{1}{2}d(q,r)^2$$

so $d(\bar{p}, \bar{m}) \ge d(p, m)$ for m a midpoint of [q, r]. Thus, by Exercise 6.5. it follows that X is a CAT(0)-space.

A uniquely geodesic space X is said to be metrically convex if, for all constant speed geodesics $\alpha, \beta \colon [0, 1] \to X$ we have

$$d(\alpha(t), \beta(t)) \le (1 - t)d(\alpha(0), \beta(0)) + td(\alpha(1), \beta(1)),$$

for all $t \in [0, 1]$.

Exercise 3. Prove that every CAT(0)-space is metrically convex.

Proof. Let $\alpha, \beta \colon [0,1] \to X$ be constant speed geodesics. First assume that $\alpha(0) = \beta(0)$. The claim then follows by convexity of d, Exercise 6.2. Suppose $\alpha(0) \neq \beta(0)$. Since X is geodesic, there exists a linearly parametrized geodesic $\gamma \colon [0,1] \to X$ such that $\gamma(0) = \alpha(0), \ \gamma(1) = \beta(1)$. Applying Exercise 6.2. to $\alpha(t)$ and $\gamma(t)$, and $\beta^{\leftarrow}(t) = \beta(1-t)$ and $\gamma^{\leftarrow}(t) = \gamma(1-t)$ it follows that

$$d(\alpha(t), \gamma(t)) \le t d(\alpha(1), \gamma(1)),$$

$$d(\beta^{\leftarrow}(t), \gamma^{\leftarrow}(t)) \le (1 - t) d(\beta(0), \gamma(0)).$$

The claim now follows by the triangle inequality,

$$d(\alpha(t),\beta(t)) \leq d(\alpha(t),\gamma(t)) + d(\gamma(t),\beta(t))$$

= $d(\alpha(t),\gamma(t)) + d(\gamma^{\leftarrow}(t),\beta^{\leftarrow}(t))$
 $\leq td(\alpha(1),\gamma(1)) + (1-t)d(\beta(0),\gamma(0))$
= $td(\alpha(1),\gamma(1)) + (1-t)d(\beta(0),\alpha(0)).$

- E			
	_	_	

Exercise 4. Prove that a metrically convex uniquely geodesic space X is contractible.

Proof. Fix $x_0 \in X$, equip $X \times [0,1]$ with the usual product topology, and let $h: X \times [0,1] \to X$ be defined point-wise by $h(x,t) = \gamma_x(t)$, where $\gamma_x: [0,1] \to X$ is a constant speed geodesic from x_0 to x. Since X is uniquely geodesic, h is well-defined. In particular, $h(x,0) = x_0$ and h(x,1) = x. Fix $t \in [0,1]$ and denote $h_t(x) = h(x,t)$. Since X is metrically convex,

$$d(h_t(x), h_t(y)) = d(h(x, t), h(y, t)) = d(\gamma_x(t), \gamma_y(t)) \le t d(x, y),$$

from which it follows that h_t is continuous. Similarly, fix $x \in X$ and denote $h_x(t) = h(x, t)$. Now,

$$d(h_x(t), h_x(s)) = d(h(x, t), h(x, s)) = d(\gamma_x(t), \gamma_x(s)) = \lambda d(t, s),$$

since γ_x is a constant speed geodesic, from which it follows that h_x is continuous. All in all it follows that h is continuous and $h: \operatorname{id}_X \simeq x_0$. **Exercise 5.** Let X be a CAT(0)-space, $p, q, r \in X$ and let $\alpha : [0, a] \to X$ and $\beta : [0, b] \to X$ be the unique geodesics from q to p and from r to p, respectively. Show that $d(\alpha(t), \beta(t)) \leq d(q, r)$ for all $t \leq \min\{a, b\}$.

Proof. Without loss of generality, assume $a \leq b$. Let $\overline{\Delta}(\underline{p}, q, r)$ be the 0comparison triangle with vertices $\overline{p}, \overline{q}, \overline{r}$ of $\Delta(p, q, r)$ and $\alpha(t) \in [\overline{p}, \overline{q}]$ and $\overline{\beta}(t) \in [\overline{p}, \overline{r}]$ the comparison points of $\alpha(t) \in [p, q]$ and $\beta(t) \in [p, r]$, respectively. Thus, by the Characterization Theorem of $CAT(\kappa)$ spaces, Theorem 3.2(2) and the Euclidean law of cosines

$$d(\alpha(t), \beta(t)) \le d(\overline{\alpha(t)}, \overline{\beta(t)}) \le d(\overline{q}, \overline{r}) = d(q, r),$$

for $t \leq a$.