Metric Geometry
Fall 2013
HW 7 (JK)
Exercise 1. Prove that for every $\kappa \in \mathbb{R}, l<D_{\kappa}$ and $\varepsilon>0$, there exists a constant $\delta=\delta(\kappa, l, \varepsilon)$ such that for all $x, y \in M_{\kappa}^{2}$, with $d(x, y) \leq l$, and for all $m^{\prime} \in M_{\kappa}^{2}$, with

$$
\max \left\{d\left(x, m^{\prime}\right), d\left(y, m^{\prime}\right)\right\}<\frac{1}{2} d(x, y)+\delta
$$

we have $d\left(m, m^{\prime}\right)<\varepsilon$, where m is the midpoint of $[x, y]$.
Proof. Since $l<D_{\kappa}$ and M_{κ}^{2} is D_{κ}-geodesic, there exists a unique geodesic segment $[x, y]$ joining x to y whenever $d(x, y)<D_{\kappa}$. First assume that the segment $[x, y]$ is the initial segment of $\left[x, y_{0}\right]$ of length l as we want δ to depend on l, not $d(x, y)$. Now, let $\delta_{0}=\delta_{0}(\kappa, l, \varepsilon)$ be such that if

$$
\begin{equation*}
d(x, z)+d\left(z, y_{0}\right)<d\left(x, y_{0}\right)+\delta_{0} \tag{1}
\end{equation*}
$$

then $\operatorname{dist}\left(z,\left[x, y_{0}\right]\right)<\varepsilon / 3$, c.f. Exercise 6.4. For m^{\prime} as above

$$
\begin{aligned}
d\left(x, m^{\prime}\right)+d\left(m^{\prime}, y_{0}\right) & \leq d\left(x, m^{\prime}\right)+d\left(m^{\prime}, y\right)+d\left(y, y_{0}\right) \\
& \leq \frac{1}{2} d(x, y)+\delta+\frac{1}{2} d(x, y)+\delta+d\left(y, y_{0}\right) \\
& =d(x, y)+d\left(y, y_{0}\right)+2 \delta \\
& =d\left(x, y_{0}\right)+2 \delta
\end{aligned}
$$

Let $2 \delta<\delta_{0}$, then by (1) it follows that $d\left(m^{\prime}, p\right)<\varepsilon / 3$ for some $p \in\left[x, y_{0}\right]$, and hence

$$
\begin{aligned}
& d(p, x) \leq d\left(p, m^{\prime}\right)+d\left(m^{\prime}, x\right) \leq \frac{\varepsilon}{3}+\frac{1}{2} d(x, y)+\delta \\
& d(p, y) \leq d\left(p, m^{\prime}\right)+d\left(m^{\prime}, y\right) \leq \frac{\varepsilon}{3}+\frac{1}{2} d(x, y)+\delta
\end{aligned}
$$

But $p \in\left[x, y_{0}\right]$, so $d(p, m) \leq \varepsilon / 3+\delta$, and

$$
d\left(m, m^{\prime}\right) \leq d(m, p)+d\left(p, m^{\prime}\right) \leq \frac{\varepsilon}{3}+\delta+\frac{\varepsilon}{3}
$$

and the claim follows taking $\delta \leq \varepsilon / 3$.
The general case now follows observing that $\operatorname{Isom}\left(M_{\kappa}^{2}\right)$, mapping geodesics to geodesics, is finitely generated by reflections in hyperplanes, and acts transitively on equidistant pairs of points in M_{κ}^{2}. Thus, there is no loss in generality assuming that $[x, y] \subseteq\left[x, y_{0}\right]$. To prove this, fix $k \in \mathbb{N}$ and consider $2 k$ equidistant points $p_{1}, \ldots, p_{k}, q_{1}, \ldots q_{k}$ in $M_{\kappa}^{2}, d\left(p_{i}, p_{j}\right)=d\left(q_{i}, q_{j}\right)$ and proceed by induction. Assume we have proved the claim for $i \leq k-1$. Hence, there exists an isometry $\varphi: M_{\kappa}^{2} \rightarrow M_{\kappa}^{2}$ such that $\varphi\left(p_{i}\right)=q_{i}$ and φ is the composition of $k-1$ or fewer reflections. The latter follows since rescaling the metric does not alter the group of isometries, and for $d\left(p_{i}, p_{j}\right)=d\left(q_{i}, q_{j}\right)$ in $\mathbb{H}^{n}, \mathbb{R}^{n}$ or \mathbb{R}^{n}, the isometry mapping p_{i} to q_{i} is precisely a reflection, $r_{H_{i}}$, through the hyperplane bisector H_{i}
of p_{i} and q_{i} (the set of points equidistant from p_{i} and q_{i}). Recall: a reflection through a hyperplane $H \subset \mathbb{R}^{n}$ is a map $r_{H}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined point-wise by

$$
\begin{equation*}
r_{H}(x)=x-2\langle x-p, u\rangle u \tag{2}
\end{equation*}
$$

where $p \in H$ and $u \perp H$ a unit vector. A reflection in \mathbb{S}^{n} through a hyperplane $H \subset \mathbb{S}^{n}$ is obtained by considering the hyperplane in \mathbb{R}^{n+1} spanned by H and restricting the corresponding reflection to \mathbb{S}^{n}. A reflection in \mathbb{H} is similarly of the form (2), replacing $\langle\cdot, \cdot\rangle$ by $\langle\cdot, \cdot\rangle_{n, 1}$ and taking $u \in p^{\perp}$. Going back to the proof: in the case $\varphi\left(p_{k}\right)=q_{k}$ we are done, so assume $\varphi\left(p_{k}\right) \neq q_{k}$. Let H_{k} be the hyperplane bisector of $\varphi\left(p_{k}\right)$ and q_{k}, and $r_{H_{k}}$ a reflection through it. So, $d\left(q_{i}, \varphi\left(p_{k}\right)\right)=d\left(\varphi\left(p_{i}\right), \varphi\left(p_{k}\right)\right)=d\left(p_{i}, p_{k}\right)=d\left(q_{i}, q_{k}\right)$, and $q_{i} \in H_{k}$. Hence, it follows that $\left(r_{H_{k}} \circ \varphi\right)\left(p_{i}\right)=r_{H_{k}}\left(q_{i}\right)=q_{i}$ and $\left(r_{H_{k}} \circ \varphi\right)\left(p_{k}\right)=q_{k}$, where $r_{H_{k}} \circ \varphi$ is an isometry of at most k reflections through hyperplanes. The claim now follows by induction.
N.B. Exercise 1. completes the proof of Theorem 2.12.5. The fact that Isom $\left(M_{\kappa}^{2}\right)$ acts transitively on equidistant pairs of points in M_{κ}^{2} was implicitly assumed in Theorem 3.21.

Exercise 2. Prove that a geodesic space X is a CAT(0)-space if and only if for all $p, q, r \in X$ and for all $m \in X$ with

$$
d(q, m)=d(m, r)=\frac{1}{2} d(q, r)
$$

we have

$$
d(p, q)^{2}+d(p, r)^{2} \geq 2 d(m, p)^{2}+\frac{1}{2} d(q, r)^{2}
$$

known as the CN (Courbure Négative) inequality of Bruhat and Tits, or semiparallelogram law.

Proof. Let $q, r, m \in X$ be as above and $\bar{\triangle}(p, q, r)$ be a 0 -comparison triangle for $\triangle(p, q, r)$ with vertices $\bar{p}, \bar{q}, \bar{r}$ and $\bar{m} \in[\bar{q}, \bar{r}]$ a comparison point of $m \in$ $[q, r]$. Denote by α and β the vertex angles at \bar{m} in $\bar{\triangle}(\bar{p}, \bar{q}, \bar{m})$ and $\bar{\triangle}(\bar{p}, \bar{r}, \bar{m})$, respectively, noting that $\alpha+\beta=\pi$. Then, by the law, and sum, of cosines

$$
\begin{aligned}
d(p, q)^{2}+d(p, r)^{2} & =d(\bar{p}, \bar{q})^{2}+d(\bar{p}, \bar{r})^{2} \\
& =d(\bar{p}, \bar{m})^{2}+d(\bar{q}, \bar{m})^{2}-2 d(\bar{p}, \bar{m}) d(\bar{q}, \bar{m}) \cos \alpha \\
& +d(\bar{p}, \bar{m})^{2}+d(\bar{r}, \bar{m})^{2}-2 d(\bar{p}, \bar{m}) d(\bar{r}, \bar{m}) \cos \beta \\
& =2 d(\bar{p}, \bar{m})^{2}+\frac{1}{2} d(q, r)^{2}-d(\bar{p}, \bar{m}) d(q, r)(\cos \alpha-\cos \beta) \\
& =2 d(\bar{p}, \bar{m})^{2}+\frac{1}{2} d(q, r)^{2}-2 d(\bar{p}, \bar{m}) d(q, r) \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right) \\
& =2 d(\bar{p}, \bar{m})^{2}+\frac{1}{2} d(q, r)^{2}
\end{aligned}
$$

Assume X is $C A T(0)$. Then, by the above the CN inequality holds,

$$
d(p, q)^{2}+d(p, r)^{2}=2 d(\bar{p}, \bar{m})^{2}+\frac{1}{2} d(q, r)^{2} \geq 2 d(p, m)^{2}+\frac{1}{2} d(q, r)
$$

On the other hand, if the CN inequality holds, then by the above

$$
2 d(\bar{p}, \bar{m})^{2}+\frac{1}{2} d(q, r)^{2}=d(p, q)^{2}+d(p, r)^{2} \geq 2 d(m, p)^{2}+\frac{1}{2} d(q, r)^{2},
$$

so $d(\bar{p}, \bar{m}) \geq d(p, m)$ for m a midpoint of $[q, r]$. Thus, by Exercise 6.5 . it follows that X is a $C A T(0)$-space.

A uniquely geodesic space X is said to be metrically convex if, for all constant speed geodesics $\alpha, \beta:[0,1] \rightarrow X$ we have

$$
d(\alpha(t), \beta(t)) \leq(1-t) d(\alpha(0), \beta(0))+t d(\alpha(1), \beta(1)),
$$

for all $t \in[0,1]$.
Exercise 3. Prove that every $C A T(0)$-space is metrically convex.
Proof. Let $\alpha, \beta:[0,1] \rightarrow X$ be constant speed geodesics. First assume that $\alpha(0)=\beta(0)$. The claim then follows by convexity of d, Exercise 6.2 . Suppose $\alpha(0) \neq \beta(0)$. Since X is geodesic, there exists a linearly parametrized geodesic $\gamma:[0,1] \rightarrow X$ such that $\gamma(0)=\alpha(0), \gamma(1)=\beta(1)$. Applying Exercise 6.2. to $\alpha(t)$ and $\gamma(t)$, and $\beta^{\leftarrow}(t)=\beta(1-t)$ and $\gamma^{\leftarrow}(t)=\gamma(1-t)$ it follows that

$$
\begin{aligned}
d(\alpha(t), \gamma(t)) & \leq t d(\alpha(1), \gamma(1)), \\
d\left(\beta^{\leftarrow}(t), \gamma^{\leftarrow}(t)\right) & \leq(1-t) d(\beta(0), \gamma(0)) .
\end{aligned}
$$

The claim now follows by the triangle inequality,

$$
\begin{aligned}
d(\alpha(t), \beta(t)) & \leq d(\alpha(t), \gamma(t))+d(\gamma(t), \beta(t)) \\
& =d(\alpha(t), \gamma(t))+d\left(\gamma^{\leftarrow}(t), \beta^{\leftarrow}(t)\right) \\
& \leq t d(\alpha(1), \gamma(1))+(1-t) d(\beta(0), \gamma(0)) \\
& =t d(\alpha(1), \gamma(1))+(1-t) d(\beta(0), \alpha(0)) .
\end{aligned}
$$

Exercise 4. Prove that a metrically convex uniquely geodesic space X is contractible.

Proof. Fix $x_{0} \in X$, equip $X \times[0,1]$ with the usual product topology, and let $h: X \times[0,1] \rightarrow X$ be defined point-wise by $h(x, t)=\gamma_{x}(t)$, where $\gamma_{x}:[0,1] \rightarrow X$ is a constant speed geodesic from x_{0} to x. Since X is uniquely geodesic, h is well-defined. In particular, $h(x, 0)=x_{0}$ and $h(x, 1)=x$. Fix $t \in[0,1]$ and denote $h_{t}(x)=h(x, t)$. Since X is metrically convex,

$$
d\left(h_{t}(x), h_{t}(y)\right)=d(h(x, t), h(y, t))=d\left(\gamma_{x}(t), \gamma_{y}(t)\right) \leq t d(x, y)
$$

from which it follows that h_{t} is continuous. Similarly, fix $x \in X$ and denote $h_{x}(t)=h(x, t)$. Now,

$$
d\left(h_{x}(t), h_{x}(s)\right)=d(h(x, t), h(x, s))=d\left(\gamma_{x}(t), \gamma_{x}(s)\right)=\lambda d(t, s)
$$

since γ_{x} is a constant speed geodesic, from which it follows that h_{x} is continuous. All in all it follows that h is continuous and $h: \mathrm{id}_{X} \simeq x_{0}$.

Exercise 5. Let X be a $C A T(0)$-space, $p, q, r \in X$ and let $\alpha:[0, a] \rightarrow X$ and $\beta:[0, b] \rightarrow X$ be the unique geodesics from q to p and from r to p, respectively. Show that $d(\alpha(t), \beta(t)) \leq d(q, r)$ for all $t \leq \min \{a, b\}$.

Proof. Without loss of generality, assume $a \leq b$. Let $\bar{\triangle}(p, q, r)$ be the 0 comparison triangle with vertices $\bar{p}, \bar{q}, \bar{r}$ of $\triangle(p, q, r)$ and $\overline{\alpha(t)} \in[\bar{p}, \bar{q}]$ and $\overline{\beta(t)} \in[\bar{p}, \bar{r}]$ the comparison points of $\alpha(t) \in[p, q]$ and $\beta(t) \in[p, r]$, respectively. Thus, by the Characterization Theorem of $C A T(\kappa)$ spaces, Theorem $3.2(2)$ and the Euclidean law of cosines

$$
d(\alpha(t), \beta(t)) \leq d(\overline{\alpha(t)}, \overline{\beta(t)}) \leq d(\bar{q}, \bar{r})=d(q, r)
$$

for $t \leq a$.

