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Exercise 1. Prove that for every κ ∈ R, l < Dκ and ε > 0, there exists a
constant δ = δ(κ, l, ε) such that for all x, y ∈ M2

κ, with d(x, y) ≤ l, and for all
m′ ∈M2

κ, with

max{d(x,m′), d(y,m′)} < 1

2
d(x, y) + δ,

we have d(m,m′) < ε, where m is the midpoint of [x, y].

Proof. Since l < Dκ and M2
κ is Dκ-geodesic, there exists a unique geodesic

segment [x, y] joining x to y whenever d(x, y) < Dκ. First assume that the
segment [x, y] is the initial segment of [x, y0] of length l as we want δ to depend
on l, not d(x, y). Now, let δ0 = δ0(κ, l, ε) be such that if

d(x, z) + d(z, y0) < d(x, y0) + δ0, (1)

then dist(z, [x, y0]) < ε/3, c.f. Exercise 6.4. For m′ as above

d(x,m′) + d(m′, y0) ≤ d(x,m′) + d(m′, y) + d(y, y0)

≤ 1

2
d(x, y) + δ +

1

2
d(x, y) + δ + d(y, y0)

= d(x, y) + d(y, y0) + 2δ

= d(x, y0) + 2δ.

Let 2δ < δ0, then by (1) it follows that d(m′, p) < ε/3 for some p ∈ [x, y0], and
hence

d(p, x) ≤ d(p,m′) + d(m′, x) ≤ ε

3
+

1

2
d(x, y) + δ,

d(p, y) ≤ d(p,m′) + d(m′, y) ≤ ε

3
+

1

2
d(x, y) + δ.

But p ∈ [x, y0], so d(p,m) ≤ ε/3 + δ, and

d(m,m′) ≤ d(m, p) + d(p,m′) ≤ ε

3
+ δ +

ε

3
,

and the claim follows taking δ ≤ ε/3.

The general case now follows observing that Isom(M2
κ), mapping geodesics to

geodesics, is finitely generated by reflections in hyperplanes, and acts transitively
on equidistant pairs of points in M2

κ . Thus, there is no loss in generality assum-
ing that [x, y] ⊆ [x, y0]. To prove this, fix k ∈ N and consider 2k equidistant
points p1, . . . , pk, q1, . . . qk in M2

κ , d(pi, pj) = d(qi, qj) and proceed by induction.
Assume we have proved the claim for i ≤ k−1. Hence, there exists an isometry
ϕ : M2

κ → M2
κ such that ϕ(pi) = qi and ϕ is the composition of k − 1 or fewer

reflections. The latter follows since rescaling the metric does not alter the group
of isometries, and for d(pi, pj) = d(qi, qj) in Hn, Rn or Rn, the isometry map-
ping pi to qi is precisely a reflection, rHi

, through the hyperplane bisector Hi
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of pi and qi (the set of points equidistant from pi and qi). Recall: a reflection
through a hyperplane H ⊂ Rn is a map rH : Rn → Rn defined point-wise by

rH(x) = x− 2〈x− p, u〉u (2)

where p ∈ H and u ⊥ H a unit vector. A reflection in Sn through a hyperplane
H ⊂ Sn is obtained by considering the hyperplane in Rn+1 spanned by H and
restricting the corresponding reflection to Sn. A reflection in H is similarly of
the form (2), replacing 〈·, ·〉 by 〈·, ·〉n,1 and taking u ∈ p⊥. Going back to the
proof: in the case ϕ(pk) = qk we are done, so assume ϕ(pk) 6= qk. Let Hk be
the hyperplane bisector of ϕ(pk) and qk, and rHk

a reflection through it. So,
d(qi, ϕ(pk)) = d(ϕ(pi), ϕ(pk)) = d(pi, pk) = d(qi, qk), and qi ∈ Hk. Hence, it
follows that (rHk

◦ ϕ)(pi) = rHk
(qi) = qi and (rHk

◦ ϕ)(pk) = qk, where rHk
◦ ϕ

is an isometry of at most k reflections through hyperplanes. The claim now
follows by induction.

N.B. Exercise 1. completes the proof of Theorem 2.12.5. The fact that
Isom(M2

κ) acts transitively on equidistant pairs of points in M2
κ was implicitly

assumed in Theorem 3.21.

Exercise 2. Prove that a geodesic space X is a CAT (0)-space if and only if for
all p, q, r ∈ X and for all m ∈ X with

d(q,m) = d(m, r) =
1

2
d(q, r),

we have

d(p, q)2 + d(p, r)2 ≥ 2d(m, p)2 +
1

2
d(q, r)2

known as the CN (Courbure Négative) inequality of Bruhat and Tits, or semi-
parallelogram law.

Proof. Let q, r,m ∈ X be as above and 4(p, q, r) be a 0-comparison triangle
for 4(p, q, r) with vertices p̄, q̄, r̄ and m̄ ∈ [q̄, r̄] a comparison point of m ∈
[q, r]. Denote by α and β the vertex angles at m̄ in 4(p̄, q̄, m̄) and 4(p̄, r̄, m̄),
respectively, noting that α+ β = π. Then, by the law , and sum, of cosines

d(p, q)2 + d(p, r)2 = d(p̄, q̄)2 + d(p̄, r̄)2

= d(p̄, m̄)2 + d(q̄, m̄)2 − 2d(p̄, m̄)d(q̄, m̄) cosα

+ d(p̄, m̄)2 + d(r̄, m̄)2 − 2d(p̄, m̄)d(r̄, m̄) cosβ

= 2d(p̄, m̄)2 +
1

2
d(q, r)2 − d(p̄, m̄)d(q, r)(cosα− cosβ)

= 2d(p̄, m̄)2 +
1

2
d(q, r)2 − 2d(p̄, m̄)d(q, r) cos

(
α+ β

2

)
cos

(
α− β

2

)
= 2d(p̄, m̄)2 +

1

2
d(q, r)2

Assume X is CAT (0). Then, by the above the CN inequality holds,

d(p, q)2 + d(p, r)2 = 2d(p̄, m̄)2 +
1

2
d(q, r)2 ≥ 2d(p,m)2 +

1

2
d(q, r).
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On the other hand, if the CN inequality holds, then by the above

2d(p̄, m̄)2 +
1

2
d(q, r)2 = d(p, q)2 + d(p, r)2 ≥ 2d(m, p)2 +

1

2
d(q, r)2,

so d(p̄, m̄) ≥ d(p,m) for m a midpoint of [q, r]. Thus, by Exercise 6.5. it follows
that X is a CAT (0)-space.

A uniquely geodesic spaceX is said to be metrically convex if, for all constant
speed geodesics α, β : [0, 1]→ X we have

d(α(t), β(t)) ≤ (1− t)d(α(0), β(0)) + td(α(1), β(1)),

for all t ∈ [0, 1].

Exercise 3. Prove that every CAT (0)-space is metrically convex.

Proof. Let α, β : [0, 1] → X be constant speed geodesics. First assume that
α(0) = β(0). The claim then follows by convexity of d, Exercise 6.2. Suppose
α(0) 6= β(0). Since X is geodesic, there exists a linearly parametrized geodesic
γ : [0, 1] → X such that γ(0) = α(0), γ(1) = β(1). Applying Exercise 6.2. to
α(t) and γ(t), and β←(t) = β(1− t) and γ←(t) = γ(1− t) it follows that

d(α(t), γ(t)) ≤ td(α(1), γ(1)),

d(β←(t), γ←(t)) ≤ (1− t)d(β(0), γ(0)).

The claim now follows by the triangle inequality,

d(α(t), β(t)) ≤ d(α(t), γ(t)) + d(γ(t), β(t))

= d(α(t), γ(t)) + d(γ←(t), β←(t))

≤ td(α(1), γ(1)) + (1− t)d(β(0), γ(0))

= td(α(1), γ(1)) + (1− t)d(β(0), α(0)).

Exercise 4. Prove that a metrically convex uniquely geodesic space X is con-
tractible.

Proof. Fix x0 ∈ X, equip X × [0, 1] with the usual product topology, and let
h : X× [0, 1]→ X be defined point-wise by h(x, t) = γx(t), where γx : [0, 1]→ X
is a constant speed geodesic from x0 to x. Since X is uniquely geodesic, h is
well-defined. In particular, h(x, 0) = x0 and h(x, 1) = x. Fix t ∈ [0, 1] and
denote ht(x) = h(x, t). Since X is metrically convex,

d(ht(x), ht(y)) = d(h(x, t), h(y, t)) = d(γx(t), γy(t)) ≤ td(x, y),

from which it follows that ht is continuous. Similarly, fix x ∈ X and denote
hx(t) = h(x, t). Now,

d(hx(t), hx(s)) = d(h(x, t), h(x, s)) = d(γx(t), γx(s)) = λd(t, s),

since γx is a constant speed geodesic, from which it follows that hx is continuous.
All in all it follows that h is continuous and h : idX ' x0.

3



Exercise 5. Let X be a CAT (0)-space, p, q, r ∈ X and let α : [0, a] → X and
β : [0, b]→ X be the unique geodesics from q to p and from r to p, respectively.
Show that d(α(t), β(t)) ≤ d(q, r) for all t ≤ min{a, b}.

Proof. Without loss of generality, assume a ≤ b. Let 4(p, q, r) be the 0-
comparison triangle with vertices p̄, q̄, r̄ of 4(p, q, r) and α(t) ∈ [p̄, q̄] and
β(t) ∈ [p̄, r̄] the comparison points of α(t) ∈ [p, q] and β(t) ∈ [p, r], respec-
tively. Thus, by the Characterization Theorem of CAT (κ) spaces, Theorem
3.2(2) and the Euclidean law of cosines

d(α(t), β(t)) ≤ d(α(t), β(t)) ≤ d(q̄, r̄) = d(q, r),

for t ≤ a.
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