Metric Geometry
Fall 2013
HW 5 (JK)
Exercise 1. Prove that $\langle x, y\rangle_{n, 1} \leq-1$ for all $x, y \in \mathbb{H}^{n}$ and that $\langle x, y\rangle_{n, 1}=-1$ if and only if $x=y$.

Proof. Let $x=\left(x_{1}, \ldots, x_{n+1}\right)$ and $y=\left(y_{1}, \ldots, y_{n+1}\right) \in \mathbb{H}^{n}$. Then, $\langle x, x\rangle_{n, 1}=$ $\langle y, y\rangle_{n, 1}=-1$. By the Cauchy-Schwartz inequality in \mathbb{R}^{n},

$$
\begin{aligned}
\langle x, y\rangle_{n, 1} & =\sum_{i=1}^{n} x_{i} y_{i}-x_{n+1} y_{n+1} \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{1 / 2}-x_{n+1} y_{n+1} \\
& =\left(\langle x, x\rangle_{n, 1}+x_{n+1}^{2}\right)^{1 / 2}\left(\langle y, y\rangle_{n, 1}+y_{n+1}^{2}\right)^{1 / 2}-x_{n+1} y_{n+1} \\
& =\left(x_{n+1}^{2}-1\right)^{1 / 2}\left(y_{n+1}^{2}-1\right)^{1 / 2}-x_{n+1} y_{n+1} \leq-1,
\end{aligned}
$$

since $x_{n+1}, y_{n+1}>0$. Thus, $\langle x, y\rangle_{n, 1} \leq-1$ for all $x, y \in \mathbb{H}$ with equality if and only if $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)$ are linearly dependent in \mathbb{R}^{n} with $x_{n+1}=y_{n+1}$. Now, if $\langle x, y\rangle_{n, 1}=-1$, then by the above $x_{n+1}=y_{n+1}$ and $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots y_{n}\right)$ are linearly dependent. Since $x_{n+1}=y_{n+1}$ and $\langle x, y\rangle_{n, 1}=-1$,

$$
-1=\sum_{i=1}^{n} x_{i} y_{i}-x_{n+1}^{2}=\sum_{i=1}^{n} x_{i} y_{i}-1-\sum_{i=1}^{n} x_{i}^{2}
$$

and it follows that,

$$
\sum_{i=1}^{n} x_{i} y_{i}=\sum_{i=1}^{n} x_{i}^{2}
$$

Now, since $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$ are linearly dependent, $y_{i}=\lambda x_{i}$ for some $\lambda \in \mathbb{R}$, and by the above equality we conclude that $\lambda=1$, and hence it follows that $x=y$. On the other hand, for $x \in \mathbb{H}^{n}$ and $x=y,\langle x, y\rangle_{n, 1}=$ $\langle x, x\rangle_{n, 1}=-1$.

Together with Theorem 2.12 this proves that $\left(\mathbb{H}^{n}, d\right)$ is a metric space, called the hyperboloid model for \mathbb{H}^{n}.

Exercise 2. Let $x \in \mathbb{H}^{n}$, let $u \in x^{\perp} a$ unit vector w.r.t. $\left.\langle\cdot, \cdot\rangle_{n, 1}\right|_{x^{\perp}}$ and let $\gamma: \mathbb{R} \rightarrow \mathbb{H}^{n}$,

$$
\gamma(t)=\cosh (t) x+\sinh (t) u
$$

Find $\gamma^{\prime}(t) \in \mathbb{R}^{n+1}$ and show that $\gamma^{\prime}(t) \in \gamma(t)^{\perp}$. Compute $\left\|\gamma^{\prime}(t)\right\|$ w.r.t. the inner product $\left.\langle\cdot, \cdot\rangle_{n, 1}\right|_{\gamma(t)^{\perp}}$.

Proof. First note that the map γ is well defined, $\gamma(t) \in \mathbb{H}^{n}$, c.f. lecture notes comments following (2.10). By straightforward differentiation,

$$
\gamma^{\prime}(t)=\sinh (t) x+\cosh (t) u
$$

for all $t \in \mathbb{R}$. Thus,

$$
\left\langle\gamma(t), \gamma^{\prime}(t)\right\rangle_{n+1}=\cosh (t) \sinh (t)\langle x, x\rangle_{n, 1}+\sinh (t) \cosh (t)\langle u, u\rangle_{n, 1}=0
$$

since $\langle x, x\rangle_{n, 1}=-1,\langle u, u\rangle_{n, 1}=1$. In other words, $\gamma^{\prime}(t) \in \gamma(t)^{\perp}$ for all $t \in \mathbb{R}$. Similarly,

$$
\left\|\gamma^{\prime}(t)\right\|^{2}=\left\langle\gamma^{\prime}(t), \gamma^{\prime}(t)\right\rangle_{n, 1}=\sinh ^{2}(t)\langle x, x\rangle_{n, 1}+\cosh ^{2}(t)\langle u, u\rangle_{n, 1}=1
$$

so γ is a unit speed geodesic line in \mathbb{H}^{n}.
Exercise 3. Let $Z=\left\{0,1,2^{-1}, 2^{-2}, \ldots, 2^{-n}, \ldots\right\}$. Glue isometrically together two copies of \mathbb{R} along Z and let \bar{X} be the resulting metric space (c.f. Theorem 1.87). Let $\alpha:[0,2] \rightarrow \bar{X}, \beta:[0,2] \rightarrow \bar{X}$ be two geodesics emanating from [0] such that

$$
\alpha(t)=\beta(t) \Leftrightarrow t \in Z
$$

Find the angle $\angle_{[0]}(\alpha, \beta)$ and show that the angle does not exist in the strong sense.

Solution. Since both α and β are geodesics issuing from [0], it follows that $\bar{d}([0], \alpha(t))=\bar{d}([0], \beta(t))=t$. In particular, $\alpha(1)=\beta(1)=[1], \alpha\left(2^{-n}\right)=$ $\beta\left(2^{-n}\right)=\left[2^{-n}\right]$, and

$$
\begin{aligned}
\cos \bar{Z}_{[0]}\left(\alpha\left(2^{-n}\right), \beta\left(2^{-m}\right)\right) & =\frac{\bar{d}\left([0],\left[2^{-n}\right]\right)^{2}+\bar{d}\left([0],\left[2^{-m}\right]\right)^{2}-\bar{d}\left(\left[2^{-n}\right],\left[2^{-m}\right]\right)^{2}}{2 \bar{d}\left([0],\left[2^{-n}\right]\right) \bar{d}\left([0],\left[2^{-m}\right]\right)} \\
& =\frac{2^{-2 n}+2^{-2 m}-\left(2^{-n}-2^{-m}\right)^{2}}{2 \cdot 2^{-n-m}}=1 .
\end{aligned}
$$

Thus,

$$
\lim _{m, n \rightarrow \infty} \bar{Z}_{[0]}\left(\alpha\left(2^{-n}\right), \beta\left(2^{-m}\right)\right)=\lim _{m, n \rightarrow \infty} \arccos (1)=0
$$

On the other hand,

$$
\begin{aligned}
& \cos \bar{乙}_{[0]}\left(\alpha\left(2^{-n}+2^{-(n+1)}\right), \beta\left(2^{-n}+2^{-(n+1)}\right)\right)=\frac{2 \cdot\left(2^{-n}+2^{-(n+1)}\right)^{2}-\left(2 \cdot 2^{-(n+1)}\right)^{2}}{2 \cdot \frac{3}{2^{n+1}} \frac{3}{2^{n+1}}} \\
& =\frac{2 \cdot \frac{3^{2}}{2^{2(n+1)}}-2^{2} \frac{1}{2^{2(n+1)}}}{2 \cdot \frac{3^{2}}{2^{2(n+1)}}}=\frac{7}{9},
\end{aligned}
$$

and it follows that

$$
\lim _{n \rightarrow \infty} \bar{Z}_{[0]}\left(\alpha\left(2^{-n}+2^{-2 n}\right), \beta\left(2^{-n}+2^{-2 n}\right)\right)=\arccos \frac{7}{9}
$$

On the other hand, for $s, t \in\left(2^{-(n+1)}, 2^{-n}\right), \bar{d}(\alpha(s), \beta(t)) \leq 2^{-n}$, and so $\angle_{[0]}(\alpha, \beta)=\arccos (7 / 9)$, but the angle does not exist in the strong sense.

In other words, if the Alexandrov angle would be defined just as a limit, it would typically not exist.

Exercise 4. Let $\gamma_{n}:[0,1 / n] \rightarrow\left(\mathbb{R}^{2}, d_{\infty}\right)$,

$$
\gamma_{n}(t)=\left(t, t^{n}(1-t)^{n}\right),
$$

$n \in \mathbb{N}, n \geq 2$, be geodesics emanating from the origin $\overline{0} \in \mathbb{R}^{2}$. Prove that $\angle_{\overline{0}}\left(\gamma_{n}, \gamma_{m}\right)=0$ for all $n, m \geq 2$.

Proof. For $t, t^{\prime}<1$ it follows for all $m, n \geq 2$ that

$$
\cos \bar{Z}_{\overline{0}}\left(\gamma_{n}(t), \gamma_{m}\left(t^{\prime}\right)\right)=\frac{t^{2}+t^{\prime 2}-\left(t-t^{\prime}\right)^{2}}{2 t t^{\prime}}=1
$$

Hence,

$$
\angle_{\overline{0}}\left(\gamma_{n}, \gamma_{m}\right)=\limsup _{t, t^{\prime} \rightarrow 0} \bar{Z}_{\overline{0}}\left(\gamma_{n}(t), \gamma_{m}\left(t^{\prime}\right)\right)=\arccos 1=0 .
$$

Thus, the angle between distinct geodesics issuing from the same point may be 0 even if their germs, as above, are distinct. So, in general $\left(c, c^{\prime}\right) \mapsto \angle_{p}\left(c, c^{\prime}\right)$ does not define a metric on the set of germs of geodesics issuing from some point p. However, it is a pseudometric by Theorem 2.17. If the angle would have been defined by the lower limit, this would fail.

