
Metric Geometry
Fall 2013
HW 5 (JK)

Exercise 1. Prove that 〈x, y〉n,1 ≤ −1 for all x, y ∈ Hn and that 〈x, y〉n,1 = −1
if and only if x = y.

Proof. Let x = (x1, . . . , xn+1) and y = (y1, . . . , yn+1) ∈ Hn. Then, 〈x, x〉n,1 =
〈y, y〉n,1 = −1. By the Cauchy-Schwartz inequality in Rn,

〈x, y〉n,1 =

n∑
i=1

xiyi − xn+1yn+1 ≤

(
n∑
i=1

x2
i

)1/2( n∑
i=1

y2
i

)1/2

− xn+1yn+1

=
(
〈x, x〉n,1 + x2

n+1

)1/2 (〈y, y〉n,1 + y2
n+1

)1/2 − xn+1yn+1

=
(
x2
n+1 − 1

)1/2 (
y2
n+1 − 1

)1/2 − xn+1yn+1 ≤ −1,

since xn+1, yn+1 > 0. Thus, 〈x, y〉n,1 ≤ −1 for all x, y ∈ H with equality if and
only if (x1, . . . , xn), (y1, . . . , yn) are linearly dependent in Rn with xn+1 = yn+1.
Now, if 〈x, y〉n,1 = −1, then by the above xn+1 = yn+1 and (x1, . . . , xn) and
(y1, . . . yn) are linearly dependent. Since xn+1 = yn+1 and 〈x, y〉n,1 = −1,

−1 =

n∑
i=1

xiyi − x2
n+1 =

n∑
i=1

xiyi − 1−
n∑
i=1

x2
i ,

and it follows that,
n∑
i=1

xiyi =

n∑
i=1

x2
i .

Now, since (x1, . . . , xn) and (y1, . . . , yn) are linearly dependent, yi = λxi for
some λ ∈ R, and by the above equality we conclude that λ = 1, and hence it
follows that x = y. On the other hand, for x ∈ Hn and x = y, 〈x, y〉n,1 =
〈x, x〉n,1 = −1.

Together with Theorem 2.12 this proves that (Hn, d) is a metric space, called
the hyperboloid model for Hn.

Exercise 2. Let x ∈ Hn, let u ∈ x⊥ a unit vector w.r.t. 〈·, ·〉n,1|x⊥ and let
γ : R→ Hn,

γ(t) = cosh(t)x+ sinh(t)u.

Find γ′(t) ∈ Rn+1 and show that γ′(t) ∈ γ(t)⊥. Compute ‖γ′(t)‖ w.r.t. the
inner product 〈·, ·〉n,1|γ(t)⊥ .

Proof. First note that the map γ is well defined, γ(t) ∈ Hn, c.f. lecture notes
comments following (2.10). By straightforward differentiation,

γ′(t) = sinh(t)x+ cosh(t)u,

for all t ∈ R. Thus,

〈γ(t), γ′(t)〉n+1 = cosh(t) sinh(t)〈x, x〉n,1 + sinh(t) cosh(t)〈u, u〉n,1 = 0,
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since 〈x, x〉n,1 = −1, 〈u, u〉n,1 = 1. In other words, γ′(t) ∈ γ(t)⊥ for all t ∈ R.
Similarly,

‖γ′(t)‖2 = 〈γ′(t), γ′(t)〉n,1 = sinh2(t)〈x, x〉n,1 + cosh2(t)〈u, u〉n,1 = 1,

so γ is a unit speed geodesic line in Hn.

Exercise 3. Let Z = {0, 1, 2−1, 2−2, . . . , 2−n, . . . }. Glue isometrically together
two copies of R along Z and let X be the resulting metric space (c.f. Theorem
1.87). Let α : [0, 2] → X, β : [0, 2] → X be two geodesics emanating from [0]
such that

α(t) = β(t)⇔ t ∈ Z.
Find the angle ∠[0](α, β) and show that the angle does not exist in the strong
sense.

Solution. Since both α and β are geodesics issuing from [0], it follows that
d̄([0], α(t)) = d̄([0], β(t)) = t. In particular, α(1) = β(1) = [1], α(2−n) =
β(2−n) = [2−n], and

cos∠[0](α(2−n), β(2−m)) =
d̄([0], [2−n])2 + d̄([0], [2−m])2 − d̄([2−n], [2−m])2

2d̄([0], [2−n])d̄([0], [2−m])

=
2−2n + 2−2m − (2−n − 2−m)2

2 · 2−n−m
= 1.

Thus,
lim

m,n→∞
∠[0](α(2−n), β(2−m)) = lim

m,n→∞
arccos(1) = 0.

On the other hand,

cos∠[0](α(2−n + 2−(n+1)), β(2−n + 2−(n+1))) =
2 ·
(
2−n + 2−(n+1)

)2 − (2 · 2−(n+1))2

2 · 3

2n+1

3

2n+1

=
2 · 32

22(n+1)
− 22 1

22(n+1)

2 · 32

22(n+1)

=
7

9
,

and it follows that

lim
n→∞

∠[0](α(2−n + 2−2n), β(2−n + 2−2n)) = arccos
7

9
.

On the other hand, for s, t ∈ (2−(n+1), 2−n), d̄(α(s), β(t)) ≤ 2−n, and so
∠[0](α, β) = arccos(7/9), but the angle does not exist in the strong sense.

In other words, if the Alexandrov angle would be defined just as a limit, it
would typically not exist.

Exercise 4. Let γn : [0, 1/n]→ (R2, d∞),

γn(t) = (t, tn(1− t)n),

n ∈ N, n ≥ 2, be geodesics emanating from the origin 0̄ ∈ R2. Prove that
∠0̄(γn, γm) = 0 for all n,m ≥ 2.
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Proof. For t, t′ < 1 it follows for all m,n ≥ 2 that

cos ∠̄0̄(γn(t), γm(t′)) =
t2 + t′2 − (t− t′)2

2tt′
= 1.

Hence,
∠0̄(γn, γm) = lim sup

t,t′→0
∠̄0̄(γn(t), γm(t′)) = arccos 1 = 0.

Thus, the angle between distinct geodesics issuing from the same point may
be 0 even if their germs, as above, are distinct. So, in general (c, c′) 7→ ∠p(c, c′)
does not define a metric on the set of germs of geodesics issuing from some point
p. However, it is a pseudometric by Theorem 2.17. If the angle would have been
defined by the lower limit, this would fail.
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