Metric Geometry Fall 2013 HW 4 (JK)

In exercises 1, 2, and 3, let $(X_{\alpha}, d_{\alpha})_{\alpha \in \mathcal{A}}, Z, i_{\alpha} \colon Z \to Z_{\alpha}$, and $(\overline{X}, \overline{d})$ be as in the isometric gluing along Z. In particular \overline{X} is a metric space with metric \overline{d} (c.f. Theorem 1.87)

Exercise 1. Show that \overline{X} is complete if each X_{α} is complete.

Proof. Let (\bar{x}_m) be a Cauchy sequence in \overline{X} . If there exists a subsequence, still denoted by (\bar{x}_m) such that $\bar{x}_m = \{x_m\}$ for $x_m \in X_\alpha$, $\alpha \in \mathcal{A}$ fixed, we are done. Indeed, (x_m) is then a Cauchy sequence in X_α , which is complete, and hence converges to a point $x \in X_\alpha$, and so $\bar{d}(\bar{x}_{m_k}, \bar{x}) = d_\alpha(x_{m_k}, x) \to 0$. Therefore, we may assume that there exist a subsequence, still denoted by (\bar{x}_m) , such that $\bar{x}_m = \{x_m\}$, where $x_m \in X_{\alpha_m}$ and $\alpha_m \neq \alpha_n$ if $m \neq n$ (namely, if for infinitely many indexes m the $x_m \in Z_{\alpha_m}$, $\alpha_m \neq \alpha_n$ if $m \neq n$, the sequence (\bar{x}_m) is a Cauchy sequence in X_α and thus converges to a point \bar{x} in \overline{X} by the previous). Since this subsequence is a Cauchy sequence in \bar{X} , for every $i \in \mathbb{N}^+$ there exists m_i such that

$$\bar{d}(\bar{x}_m, \bar{x}_n) \le 1/i \quad \forall m, n \ge m_i$$

Furthermore, for each $m \ge m_i$ there exists $z_m \in Z$ such that

 $d_{\alpha_m}(x_m, i_{\alpha_m}(z_m)) + d_{\alpha_{m+1}}(i_{\alpha_{m+1}}(z_m), x_{m+1}) \le \bar{d}(\bar{x}_m, \bar{x}_{m+1}) + 1/i \le 2/i$

 $\forall m \geq m_i$. In particular,

$$\bar{d}(\bar{x}_m, [i_{\alpha_m}(z_m)]) = d_{\alpha_m}(x_m, i_{\alpha_m}(z_m)) \le 2/i \quad \forall m \ge m_i,$$

and so,

$$\bar{d}([i_{\alpha_m}(z_m)], [i_{\alpha_n}(z_n)]) \le \bar{d}([i_{\alpha_m}(z_m)], \bar{x}_m) + \bar{d}(\bar{x}_m, \bar{x}_n) + \bar{d}(\bar{x}_n, [i_{\alpha_n}(z_n)]) \le 5/i$$

 $\forall m, n \geq m_i$. Hence $([i_{\alpha_m}(z_m)])$ is a Cauchy-sequence in X. Since

$$d_{\alpha}(i_{\alpha}(z_m), i_{\alpha}(z_n)) = \bar{d}([i_{\alpha}(z_m)], [i_{\alpha}(z_n)]) = \bar{d}([i_{\alpha_m}(z_m)], [i_{\alpha_n}(z_n)])$$

for all α , also $(i_{\alpha}(z_m))$ is a Cauchy-sequence in X_{α} (for all α), and hence $d_{\alpha}(i_{\alpha}(z_m), x_0) \to 0$ for some $x_0 \in X_{\alpha}$. Consequently,

$$\bar{d}(\bar{x}_m, \bar{x}_0) \le \bar{d}(\bar{x}_m, [i_{\alpha_m}(z_m)]) + \bar{d}([i_\alpha(z_m)], \bar{x}_0) \to 0$$

 \square

as $m \to \infty$ which shows that \bar{X} is complete.

Exercise 2. Suppose each X_{α} is locally compact and that the index set A is finite. Prove that \overline{X} is locally compact.

Proof. Suppose $\bar{x} \in \overline{X}$. Then $\bar{x} = [x_{\alpha}]$ for some $x_{\alpha} \in X_{\alpha} \setminus Z_{\alpha}$ or $\bar{x} = [i_{\alpha}(z)]$ for some $z \in Z$. If $\bar{x} = [x_{\alpha}]$ for some $x_{\alpha} \in X_{\alpha} \setminus Z_{\alpha}$, then $\bar{x} = \{x_{\alpha}\}$, and since $Z_{\alpha} \subset X_{\alpha}$ is closed, x_{α} has an open neighbourhood $B(x_{\alpha}, r) \subset X_{\alpha} \setminus Z_{\alpha}$ with compact closure. Suppose $\bar{x} = [i_{\alpha}(z)]$ for some $z \in Z$ and write $\mathcal{A} = \{1, \ldots, n\}$. Then,

$$\bar{x} = \bigcup_{\alpha \in \mathcal{A}} \{i_{\alpha}(z)\} = \{i_1(z)\} \cup \dots \cup \{i_n(z)\}.$$

For each $i_1(z), \ldots, i_n(z)$ choose a ball $B(i_\alpha(z), r_\alpha) \subset X_\alpha$ whose closure is compact. Let $r = \min\{r_\alpha : \alpha = 1, \ldots, n\}$. Now,

$$B(\bar{x},r) = \bigcup_{\alpha=1}^{n} B(i_{\alpha}(z),r)$$

is a neighbourhood of \bar{x} with compact closure. Namely, let (\bar{x}_i) be a sequence in

$$\overline{B(\bar{x},r)} = \bigcup_{i=1}^{n} \overline{B(i_{\alpha}(z),r)},$$

where equality holds since the union is finite. Since \mathcal{A} is a finite set, there exists $\alpha \in \mathcal{A}$ and a subsequence $(\bar{x}_{i_{\alpha}})$ of (\bar{x}_i) in $\overline{B(i_{\alpha}(z), r)}$, which converges by compactness. Thus, every sequence (x_i) in $\overline{B(\bar{x}, r)}$ has a convergent subsequence. In other words, $\overline{B(\bar{x}, r)}$ is compact.

Exercise 3. Construct an example, where X_i is a complete geodesic space, $i \in \mathcal{A} = \{1, 2\}$, but \overline{X} is not a geodesic space.

Construction. Consider the construction from [HW 3.2]. In other words, let

$$X_{1} = \bigcup_{n=1}^{\infty} [(-1,0), (0,1/n)],$$

$$X_{2} = \bigcup_{n=1}^{\infty} [(0,1/n), (1,0)],$$

$$Z_{1} = Z_{2} = \{(0,1/n) : n \in \mathbb{N}^{+}\},$$

$$Z = Z_{1},$$

 X_i equipped with the induced path metric d_s from the Euclidean plane (\mathbb{R}^2, d), and Z_i and Z with the induced metric from X_i and X_1 , respectively. Define the isometric gluing as the identity map $i_i: Z \to Z_i$ noting that $Z_i \subset X_i$ is d_s -closed. Clearly, each X_i is a complete geodesic space, however, the isometric gluing \overline{X} along Z is not geodesic since there is no geodesic in \overline{X} joining (-1, 0)to (1, 0).

Exercise 4. Let (X, d) be a metric graph (c.f. Example 1.86 (2)). Suppose that for each $v \in V$

$$\inf\{\ell(e) \colon e \in E, v \in \{\partial_0 e, \partial_1 e\}\} > 0.$$

Prove that (X, d) is a length space. Is it complete?

Proof. Recall that

$$d(x,y) = \inf\{\ell(c) \colon c \colon [0,1] \to X \text{ piecewise linear path}, c(0) = x, c(1) = y\}.$$

Suppose $x, y \in X$ are two distinct points. We claim that d(x, y) > 0 if $x \neq y$. Since X is a metric graph it is connected, so there is a piecewise linear path $c: x \curvearrowright y$ together with a partition $0 = t_0 \leq \cdots \leq t_n = 1$ of length

$$\ell(c) = \sum_{i=0}^{n-1} \ell(c_i)$$

where $\ell(c_i) = \ell(e_i)|c_i(t_i) - c_{i+1}(t_{i+1})|$, and $c_i: [t_i, t_{i+1}] \to [0, 1]$ is an affine map such that $c|[t_i, t_{i+1}] = \pi(c_i(t), e_i)$, and for $i = 1, ..., n-1, c_{i-1}(t_i) =$ $1, c_i(t_i) = 0$. For $x, y \in X$ distinct points, either x, y belong to the same edge or not. Suppose x and y belong to distinct edges, say $x \in e_1$ and $y \in e_2$. If the edges do not share a common vertex we are done, since then for any piecewise linear path c from x to y, $l(c) \ge \inf\{\ell(e): e \in E, \partial_0 e_2 \in \{\partial_0 e, \partial_1 e\}\} > 0$, so d(x,y) > 0. On the other hand, if they share a common vertex there, then for any piecewise linear path c from x to y, it travels entirely through some edges, and as previously $\ell(c) > 0$, or its image is contained in the two edges e_1 and e_2 , but then $\ell(c) \ge \ell(e_2)|c_{n-1}(t_{n-1}) - c_n(t_n)| = \ell(e_2)c_n(t_n) > 0$, and altogether d(x,y) > 0. Last, suppose that x and y are points on the same edge e_0 . Now for any piecewise linear path c from x to y, either its image is contained in e_0 , or not. If not, it always travels through some edge and for all such paths $\ell(c) > 0$. So assume the image of the path lies in some edge e_0 . But then $\ell(c) = \ell(e_0)|c_0(t_0) - c_0(t_1)| > 0$ so d(x, y) > 0. Hence, d defines a metric on X. By Theorem 1.56 $d_s(x,y) \ge d(x,y)$. On the other hand, $d_s(x,y) \le d(x,y)$ since d_s is the infimum over the *d*-continuous paths, whereas *d* is the infimum over the piecewise continuous paths, which is a subset of all *d*-continuous paths. Thus, (X, d) is a length space. To prove completeness, let (x_i) be any Cauchy sequence. In particular $\{x_i : i \in \mathbb{N}\}$ is bounded, and thus for any r > 0 there exists $i_0 \in \mathbb{N}$ such that $x_i \in B(x,r)$ whenever $i \geq i_0$. Now, $x \in X$ is either a vertex or an interior point of some edge e. Suppose x is a vertex. Then, for any r > 0, eventually $x_i \in B(x, r)$, in other words $x_i \to x \in X$. On the other hand, if $x \in e$, then by assumption $\inf \ell(e) > 0$, so for sufficiently large i the sequence (x_i) belongs to $B(x,r) \subseteq e$ for any r small enough, and so $x_i \to x \in X$.

In general, a metric graph (X, d), although the name might suggest otherwise, comes equipped with only a pseudometric d. However, if it happens that for each vertex v in the graph $\inf\{\ell(e): e \in E, v \in \{\partial_0 e, \partial_1 e\}\} > 0$, then, by the previous, d is actually a metric and (X, d) a complete length space. If the set of edge lengths $\{\ell(e): e \in E\}$ is finite, then X is also geodesic.

Exercise 5. Let (X, d) be a metric space, τ_d the topology determined by d, and let \sim be an equivalence relation in X. Suppose that the quotient pseudometric \overline{d} associated to \sim is a metric in \overline{X} . Then it determines a topology $\tau_{\overline{d}}$. On the other hand, \overline{X} has the quotient topology τ_{\sim} , where $U \in \tau_{\sim}$ if and only if $\pi^{-1}U \in \tau_d$ under the canonical projection $\pi: X \to X/\sim$. Prove that $\tau_{\overline{d}} \subset \tau_{\sim}$.

Proof. Denoting $\bar{x} = \pi(x)$, it suffices to prove that $\pi^{-1}(B_{\bar{d}}(\bar{x},\varepsilon))$ is open in $(X, \tau_{\bar{d}})$, for then $B_{\bar{d}}(\pi(x), \varepsilon)$ is open in $(\overline{X}, \tau_{\sim})$. Now,

$$B_{\bar{d}}(\bar{x},\varepsilon) = \{\bar{y} \colon d(\bar{x},\bar{y}) < \varepsilon\}$$

consists of those $\bar{y} \in \overline{X}$ for which there exists a chain $x = x_1, y_1 \sim x_2, \ldots, y_{n-1} \sim x_n, y_n = y$ such that

$$\sum_{i=1}^{n} d(x_i, y_i) < \varepsilon.$$

The set of y that have such a chain, $\pi^{-1}(B_{\bar{d}}(\bar{x},\varepsilon))$ is, however, open in (\bar{X},\bar{d}) . Namely, let y be such a point, the chain denoted as above, and $z \in \bar{X}$ such that $d(y,z) < \varepsilon - \delta$ where

$$\delta = \sum_{i=1}^{n} d(x_i, y_i).$$

Hence, the chain from x to y has an extension to a chain from x to z in $\pi^{-1}(B_{\bar{d}}(\bar{x},\varepsilon))$ setting $x_{n+1} = y$, $y_{n+1} = z$ and observing that

$$\sum_{i=1}^{n+1} d(x_i, y_i) = \delta + d(y, z) < \varepsilon.$$