Metric Geometry
Fall 2013
HW 4 (JK)
In exercises 1,2 , and 3 , let $\left(X_{\alpha}, d_{\alpha}\right)_{\alpha \in \mathcal{A}}, Z, i_{\alpha}: Z \rightarrow Z_{\alpha}$, and (\bar{X}, \bar{d}) be as in the isometric gluing along Z. In particular \bar{X} is a metric space with metric \bar{d} (c.f. Theorem 1.87)

Exercise 1. Show that \bar{X} is complete if each X_{α} is complete.
Proof. Let $\left(\bar{x}_{m}\right)$ be a Cauchy sequence in \bar{X}. If there exists a subsequence, still denoted by $\left(\bar{x}_{m}\right)$ such that $\bar{x}_{m}=\left\{x_{m}\right\}$ for $x_{m} \in X_{\alpha}, \alpha \in \mathcal{A}$ fixed, we are done. Indeed, $\left(x_{m}\right)$ is then a Cauchy sequence in X_{α}, which is complete, and hence converges to a point $x \in X_{\alpha}$, and so $\bar{d}\left(\bar{x}_{m_{k}}, \bar{x}\right)=d_{\alpha}\left(x_{m_{k}}, x\right) \rightarrow 0$. Therefore, we may assume that there exist a subsequence, still denoted by $\left(\bar{x}_{m}\right)$, such that $\bar{x}_{m}=\left\{x_{m}\right\}$, where $x_{m} \in X_{\alpha_{m}}$ and $\alpha_{m} \neq \alpha_{n}$ if $m \neq n$ (namely, if for infinitely many indexes m the $x_{m} \in Z_{\alpha_{m}}, \alpha_{m} \neq \alpha_{n}$ if $m \neq n$, the sequence $\left(\bar{x}_{m}\right)$ is a Cauchy sequence in X_{α} and thus converges to a point \bar{x} in \bar{X} by the previous). Since this subsequence is a Cauchy sequence in \bar{X}, for every $i \in \mathbb{N}^{+}$there exists m_{i} such that

$$
\bar{d}\left(\bar{x}_{m}, \bar{x}_{n}\right) \leq 1 / i \quad \forall m, n \geq m_{i} .
$$

Furthermore, for each $m \geq m_{i}$ there exists $z_{m} \in Z$ such that

$$
d_{\alpha_{m}}\left(x_{m}, i_{\alpha_{m}}\left(z_{m}\right)\right)+d_{\alpha_{m+1}}\left(i_{\alpha_{m+1}}\left(z_{m}\right), x_{m+1}\right) \leq \bar{d}\left(\bar{x}_{m}, \bar{x}_{m+1}\right)+1 / i \leq 2 / i
$$

$\forall m \geq m_{i}$. In particular,

$$
\bar{d}\left(\bar{x}_{m},\left[i_{\alpha_{m}}\left(z_{m}\right)\right]\right)=d_{\alpha_{m}}\left(x_{m}, i_{\alpha_{m}}\left(z_{m}\right)\right) \leq 2 / i \quad \forall m \geq m_{i}
$$

and so,

$$
\bar{d}\left(\left[i_{\alpha_{m}}\left(z_{m}\right)\right],\left[i_{\alpha_{n}}\left(z_{n}\right)\right]\right) \leq \bar{d}\left(\left[i_{\alpha_{m}}\left(z_{m}\right)\right], \bar{x}_{m}\right)+\bar{d}\left(\bar{x}_{m}, \bar{x}_{n}\right)+\bar{d}\left(\bar{x}_{n},\left[i_{\alpha_{n}}\left(z_{n}\right)\right]\right) \leq 5 / i
$$

$\forall m, n \geq m_{i}$. Hence $\left(\left[i_{\alpha_{m}}\left(z_{m}\right)\right]\right)$ is a Cauchy-sequence in \bar{X}. Since

$$
d_{\alpha}\left(i_{\alpha}\left(z_{m}\right), i_{\alpha}\left(z_{n}\right)\right)=\bar{d}\left(\left[i_{\alpha}\left(z_{m}\right)\right],\left[i_{\alpha}\left(z_{n}\right)\right]\right)=\bar{d}\left(\left[i_{\alpha_{m}}\left(z_{m}\right)\right],\left[i_{\alpha_{n}}\left(z_{n}\right)\right]\right)
$$

for all α, also $\left(i_{\alpha}\left(z_{m}\right)\right)$ is a Cauchy-sequence in X_{α} (for all α), and hence $d_{\alpha}\left(i_{\alpha}\left(z_{m}\right), x_{0}\right) \rightarrow 0$ for some $x_{0} \in X_{\alpha}$. Consequently,

$$
\bar{d}\left(\bar{x}_{m}, \bar{x}_{0}\right) \leq \bar{d}\left(\bar{x}_{m},\left[i_{\alpha_{m}}\left(z_{m}\right)\right]\right)+\bar{d}\left(\left[i_{\alpha}\left(z_{m}\right)\right], \bar{x}_{0}\right) \rightarrow 0
$$

as $m \rightarrow \infty$ which shows that \bar{X} is complete.
Exercise 2. Suppose each X_{α} is locally compact and that the index set \mathcal{A} is finite. Prove that \bar{X} is locally compact.
Proof. Suppose $\bar{x} \in \bar{X}$. Then $\bar{x}=\left[x_{\alpha}\right]$ for some $x_{\alpha} \in X_{\alpha} \backslash Z_{\alpha}$ or $\bar{x}=\left[i_{\alpha}(z)\right]$ for some $z \in Z$. If $\bar{x}=\left[x_{\alpha}\right]$ for some $x_{\alpha} \in X_{\alpha} \backslash Z_{\alpha}$, then $\bar{x}=\left\{x_{\alpha}\right\}$, and since $Z_{\alpha} \subset X_{\alpha}$ is closed, x_{α} has an open neighbourhood $B\left(x_{\alpha}, r\right) \subset X_{\alpha} \backslash Z_{\alpha}$ with compact closure. Suppose $\bar{x}=\left[i_{\alpha}(z)\right]$ for some $z \in Z$ and write $\mathcal{A}=\{1, \ldots, n\}$. Then,

$$
\bar{x}=\bigcup_{\alpha \in \mathcal{A}}\left\{i_{\alpha}(z)\right\}=\left\{i_{1}(z)\right\} \cup \cdots \cup\left\{i_{n}(z)\right\} .
$$

For each $i_{1}(z), \ldots, i_{n}(z)$ choose a ball $B\left(i_{\alpha}(z), r_{\alpha}\right) \subset X_{\alpha}$ whose closure is compact. Let $r=\min \left\{r_{\alpha}: \alpha=1, \ldots, n\right\}$. Now,

$$
B(\bar{x}, r)=\bigcup_{\alpha=1}^{n} B\left(i_{\alpha}(z), r\right)
$$

is a neighbourhood of \bar{x} with compact closure. Namely, let $\left(\bar{x}_{i}\right)$ be a sequence in

$$
\overline{B(\bar{x}, r)}=\bigcup_{i=1}^{n} \overline{B\left(i_{\alpha}(z), r\right)}
$$

where equality holds since the union is finite. Since \mathcal{A} is a finite set, there exists $\alpha \in \mathcal{A}$ and a subsequence $\left(\bar{x}_{i_{\alpha}}\right)$ of $\left(\bar{x}_{i}\right)$ in $\overline{B\left(i_{\alpha}(z), r\right)}$, which converges by compactness. Thus, every sequence $\left(x_{i}\right)$ in $\overline{B(\bar{x}, r)}$ has a convergent subsequence. In other words, $\overline{B(\bar{x}, r)}$ is compact.

Exercise 3. Construct an example, where X_{i} is a complete geodesic space, $i \in \mathcal{A}=\{1,2\}$, but \bar{X} is not a geodesic space.

Construction. Consider the construction from [HW 3.2]. In other words, let

$$
\begin{aligned}
X_{1} & =\bigcup_{n=1}^{\infty}[(-1,0),(0,1 / n)] \\
X_{2} & =\bigcup_{n=1}^{\infty}[(0,1 / n),(1,0)] \\
Z_{1} & =Z_{2}=\left\{(0,1 / n): n \in \mathbb{N}^{+}\right\} \\
Z & =Z_{1}
\end{aligned}
$$

X_{i} equipped with the induced path metric d_{s} from the Euclidean plane $\left(\mathbb{R}^{2}, d\right)$, and Z_{i} and Z with the induced metric from X_{i} and X_{1}, respectively. Define the isometric gluing as the identity map $i_{i}: Z \rightarrow Z_{i}$ noting that $Z_{i} \subset X_{i}$ is d_{s}-closed. Clearly, each X_{i} is a complete geodesic space, however, the isometric gluing \bar{X} along Z is not geodesic since there is no geodesic in \bar{X} joining $(-1,0)$ to $(1,0)$.

Exercise 4. Let (X, d) be a metric graph (c.f. Example 1.86 (2)). Suppose that for each $v \in V$

$$
\inf \left\{\ell(e): e \in E, v \in\left\{\partial_{0} e, \partial_{1} e\right\}\right\}>0
$$

Prove that (X, d) is a length space. Is it complete?
Proof. Recall that

$$
d(x, y)=\inf \{\ell(c): c:[0,1] \rightarrow X \text { piecewise linear path, } c(0)=x, c(1)=y\}
$$

Suppose $x, y \in X$ are two distinct points. We claim that $d(x, y)>0$ if $x \neq y$. Since X is a metric graph it is connected, so there is a piecewise linear path $c: x \curvearrowright y$ together with a partition $0=t_{0} \leq \cdots \leq t_{n}=1$ of length

$$
\ell(c)=\sum_{i=0}^{n-1} \ell\left(c_{i}\right)
$$

where $\ell\left(c_{i}\right)=\ell\left(e_{i}\right)\left|c_{i}\left(t_{i}\right)-c_{i+1}\left(t_{i+1}\right)\right|$, and $c_{i}:\left[t_{i}, t_{i+1}\right] \rightarrow[0,1]$ is an affine map such that $c \mid\left[t_{i}, t_{i+1}\right]=\pi\left(c_{i}(t), e_{i}\right)$, and for $i=1, \ldots, n-1, c_{i-1}\left(t_{i}\right)=$ $1, c_{i}\left(t_{i}\right)=0$. For $x, y \in X$ distinct points, either x, y belong to the same edge or not. Suppose x and y belong to distinct edges, say $x \in e_{1}$ and $y \in e_{2}$. If the edges do not share a common vertex we are done, since then for any piecewise linear path c from x to $y, l(c) \geq \inf \left\{\ell(e): e \in E, \partial_{0} e_{2} \in\left\{\partial_{0} e, \partial_{1} e\right\}\right\}>0$, so $d(x, y)>0$. On the other hand, if they share a common vertex there, then for any piecewise linear path c from x to y, it travels entirely through some edges, and as previously $\ell(c)>0$, or its image is contained in the two edges e_{1} and e_{2}, but then $\ell(c) \geq \ell\left(e_{2}\right)\left|c_{n-1}\left(t_{n-1}\right)-c_{n}\left(t_{n}\right)\right|=\ell\left(e_{2}\right) c_{n}\left(t_{n}\right)>0$, and altogether $d(x, y)>0$. Last, suppose that x and y are points on the same edge e_{0}. Now for any piecewise linear path c from x to y, either its image is contained in e_{0}, or not. If not, it always travels through some edge and for all such paths $\ell(c)>0$. So assume the image of the path lies in some edge e_{0}. But then $\ell(c)=\ell\left(e_{0}\right)\left|c_{0}\left(t_{0}\right)-c_{0}\left(t_{1}\right)\right|>0$ so $d(x, y)>0$. Hence, d defines a metric on X. By Theorem $1.56 d_{s}(x, y) \geq d(x, y)$. On the other hand, $d_{s}(x, y) \leq d(x, y)$ since d_{s} is the infimum over the d-continuous paths, whereas d is the infimum over the piecewise continuous paths, which is a subset of all d-continuous paths. Thus, (X, d) is a length space. To prove completeness, let $\left(x_{i}\right)$ be any Cauchy sequence. In particular $\left\{x_{i}: i \in \mathbb{N}\right\}$ is bounded, and thus for any $r>0$ there exists $i_{0} \in \mathbb{N}$ such that $x_{i} \in B(x, r)$ whenever $i \geq i_{0}$. Now, $x \in X$ is either a vertex or an interior point of some edge e. Suppose x is a vertex. Then, for any $r>0$, eventually $x_{i} \in B(x, r)$, in other words $x_{i} \rightarrow x \in X$. On the other hand, if $x \in e$, then by assumption $\inf \ell(e)>0$, so for sufficiently large i the sequence $\left(x_{i}\right)$ belongs to $B(x, r) \subseteq e$ for any r small enough, and so $x_{i} \rightarrow x \in X$.

In general, a metric graph (X, d), although the name might suggest otherwise, comes equipped with only a pseudometric d. However, if it happens that for each vertex v in the $\operatorname{graph} \inf \left\{\ell(e): e \in E, v \in\left\{\partial_{0} e, \partial_{1} e\right\}\right\}>0$, then, by the previous, d is actually a metric and (X, d) a complete length space. If the set of edge lengths $\{\ell(e): e \in E\}$ is finite, then X is also geodesic.

Exercise 5. Let (X, d) be a metric space, τ_{d} the topology determined by d, and let \sim be an equivalence relation in X. Suppose that the quotient pseudometric \bar{d} associated to \sim is a metric in \bar{X}. Then it determines a topology $\tau_{\bar{d}}$. On the other hand, \bar{X} has the quotient topology τ_{\sim}, where $U \in \tau_{\sim}$ if and only if $\pi^{-1} U \in \tau_{d}$ under the canonical projection $\pi: X \rightarrow X / \sim$. Prove that $\tau_{\bar{d}} \subset \tau_{\sim}$.

Proof. Denoting $\bar{x}=\pi(x)$, it suffices to prove that $\pi^{-1}\left(B_{\bar{d}}(\bar{x}, \varepsilon)\right)$ is open in $\left(X, \tau_{\bar{d}}\right)$, for then $B_{\bar{d}}(, \pi(x), \varepsilon)$ is open in $\left(\bar{X}, \tau_{\sim}\right)$. Now,

$$
B_{\bar{d}}(\bar{x}, \varepsilon)=\{\bar{y}: \bar{d}(\bar{x}, \bar{y})<\varepsilon\}
$$

consists of those $\bar{y} \in \bar{X}$ for which there exists a chain $x=x_{1}, y_{1} \sim x_{2}, \ldots, y_{n-1} \sim$ $x_{n}, y_{n}=y$ such that

$$
\sum_{i=1}^{n} d\left(x_{i}, y_{i}\right)<\varepsilon
$$

The set of y that have such a chain, $\pi^{-1}\left(B_{\bar{d}}(\bar{x}, \varepsilon)\right)$ is, however, open in (\bar{X}, \bar{d}). Namely, let y be such a point, the chain denoted as above, and $z \in \bar{X}$ such that
$d(y, z)<\varepsilon-\delta$ where

$$
\delta=\sum_{i=1}^{n} d\left(x_{i}, y_{i}\right)
$$

Hence, the chain from x to y has an extension to a chain from x to z in $\pi^{-1}\left(B_{\bar{d}}(\bar{x}, \varepsilon)\right)$ setting $x_{n+1}=y, y_{n+1}=z$ and observing that

$$
\sum_{i=1}^{n+1} d\left(x_{i}, y_{i}\right)=\delta+d(y, z)<\varepsilon
$$

