Metric Geometry Fall 2013 HW 3 (JK)

Exercise 1. Let (\mathbb{R}^2, d) a metric space, where

$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + \sqrt{|y_1 - y_2|}.$$

Find the generalized inner metric d_s associated to d. What is the topology τ_{d_s} determined by d_s ?

Solution. Let $(x_1, x_2), (x_2, y_2) \in \mathbb{R}^2$. If $y_1 = y_2 = y$,

$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2|,$$

and $d_s((x_1, y), (x_2, y)) = |x_1 - x_2|$ is the usual Euclidean distance between x_1 and x_2 . On the other hand, if $y_1 \neq y_2$, the inner distance $d_s((x_1, x_2), (x_2, y_2)) = \infty$ since $d_s((x_1, x_2), (x_2, y_2))$ is greater than or equal to the inner distance associated with the snowfalke distance $d^{1/2}$ between $y_1, y_2 \in \mathbb{R}$, which is infinite, c.f. [HW 2.1.] In other words,

$$d_s((x_1, y_1), (x_2, y_2)) = \begin{cases} |x_1 - x_2| & \text{if } y_1 = y_2\\ \infty & \text{if } y_1 \neq y_2. \end{cases}$$

Hence, (\mathbb{R}^2, d) is an uncountable disjoint union of real lines, each with its standard metric.

Exercise 2. Let X be a length space and $x, y \in X, x \neq y$. Prove that

$$dist(x, B(y, r)) = |x - y| - r$$

if r < |x - y|.

Proof. By the triangle inequality $|x - y| \le |x - z| + |z - y|$, for all $z \in B(y, r)$. Since |z - y| < r, it follows that |x - y| - r < |x - z|. Taking the infimum over all $z \in B(y, r)$, it follows that in any metric space X

$$|x - y| - r \le \operatorname{dist}(x, B(y, r)).$$

On the other hand, since X is a length space there exists for every $n \in \mathbb{N}^+$ a path $\gamma_n : [0, \ell(\gamma_n)] \to X$ from y to x such that

$$\ell(\gamma_n) = |x - y| + \frac{1}{n}.$$

Now, since γ_n is continuous there exists a $t_0 \in [0, \ell(\gamma_n)]$ such that $\ell(\gamma_n | [0, t_0]) = r - 1/n$. In other words, $\ell(\gamma_n | [t_0, \ell(\gamma_n)]) = |x - y| - r + 2/n$, and since $\gamma_n(t_0) \in B(y, r)$, it follows that

$$dist(x, B(y, r)) \le \ell(\gamma_n | [t_0, \ell(\gamma_n)]) = |x - y| - r + 2/n,$$

for every n. Thus, $dist(x, B(y, r)) \leq |x - y| - r$, from which the claim now follows.

Exercise 3. Prove that the completion of a length space is a length space.

Proof. Let X be a length space, and \overline{X} its completion and $\overline{x}, \overline{y} \in \overline{X}$. Now there exists Cauchy sequences (x_n) and (y_n) of points in X converging to \overline{x} and \overline{y} , respectively. In other words, for any $\varepsilon > 0$ there exists an N_{ε} such that $|x_i - \overline{x}| \leq \varepsilon/4, |y_i - \overline{y}| \leq \varepsilon/4$ whenever $i \geq N$. By the triangle inequality,

$$|x_i - y_i| \le |x - y| + \frac{\varepsilon}{2}$$

Now, choose paths $\gamma_i: x_i \curvearrowright y_i$ parametrized by arclength such that $\ell(\gamma_i) \leq |x_i - y_i| + \varepsilon/2$. By continuity, there exists a point $z = \gamma_i(t_0)$ such that

$$\begin{aligned} |x_i - z| &\leq \frac{\ell(\gamma_i)}{2} \leq \frac{1}{2} |x_i - y_i| + \frac{\varepsilon}{4} \leq \frac{1}{2} |x - y| + \frac{\varepsilon}{2}, \\ |y_i - z| &\leq \frac{\ell(\gamma_i)}{2} \leq \frac{1}{2} |x_i - y_i| + \frac{\varepsilon}{4} \leq \frac{1}{2} |x - y| + \frac{\varepsilon}{2}. \end{aligned}$$

Now,

$$|\bar{x} - z| \le |\bar{x} - x_i| + |x_i - z| \le \frac{\varepsilon}{4} + \frac{1}{2}|x - y| + \frac{\varepsilon}{2} \le \frac{1}{2}|x - y| + \frac{3}{4}\varepsilon.$$

Similarly for \bar{y} . Thus, z is an ε -midpoint for \bar{x} and \bar{y} and since this holds for any two points in \overline{X} it follows by [HW 3.5.] that the completion is a length space.

Exercise 4. Construct a complete length space which is not a geodesic space.

Construction. Let (\mathbb{R}^2, d) be the Euclidean plane. Consider the union of segments

$$T = \bigcup_{n=1}^{\infty} \left(\left[(-1,0), (0,1/n) \right] \cup \left[(0,1/n), (1,0) \right] \right) \subset \mathbb{R}^2.$$

Equip T with the induced path metric, d_s , from the plane. (T, d_s) is a length space, but not geodesic since $d_s((-1,0), (1,0)) = 2$ but there is no path of length 2 in T joining the points. It is also complete. Namely, without loss of generality assume (x_n) is a Cauchy sequence in T not converging to (-1,0) or (1,0). Thus, the sequence must eventually belong to some $[(-1,0), (0,1/m)] \cup [(0,1/m), (1,0)] \subset T$, which is complete in the path metric.

Exercise 5. Construct a locally compact geodesic space whose completion is neither geodesic nor locally compact.

Construction. Let (\mathbb{R}^2, d) be the Euclidean planeand consider the subset

$$S = (0,1] \times \{0\} \cup (0,1] \times \{1\} \cup \bigcup_{n=1}^{\infty} \{1/n\} \times [0,1]$$
$$:= (0,1] \times \{0\} \cup (0,1] \times \{1\} \cup \bigcup_{n=1}^{\infty} I_n,$$

equipped with the induced path metric, d_s , from the plane. (S, d_s) is a locally compact geodesic space. Consider its metric completion \overline{S} . First observe that

(0,0) and $(0,1) \in \overline{S}$ and \overline{S} is not locally compact at these points. To see this, consider the open neighbourhood $B((0,i), 1/n), i \in \{0,1\}$ and observe that

$$B((0,i),1/n)\cap \bigcup_{m>n} I_m,$$

is an open subset of B((0,i), 1/n) which is not compact. Moreover, the completion is not geodesic since there is no geodesic from (0,0) to (0,1) in \overline{S} . Such a geodesic would necessarily contain points from the plane of the form (0,s), 0 < s < 1, but no such points belong to \overline{S} .

Note the reason that the completion is not geodesic: the midpoints of the geodesics do not form a Cauchy sequence in S, so they do not end up in the completion \overline{S} , which consists of the equivalence classes of the Cauchy sequences.