Metric Geometry
Fall 2013
HW 3 (JK)
Exercise 1. Let $\left(\mathbb{R}^{2}, d\right)$ a metric space, where

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{1}-x_{2}\right|+\sqrt{\left|y_{1}-y_{2}\right|} .
$$

Find the generalized inner metric $d_{s}$ associated to $d$. What is the topology $\tau_{d_{s}}$ determined by $d_{s}$ ?

Solution. Let $\left(x_{1}, x_{2}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$. If $y_{1}=y_{2}=y$,

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{1}-x_{2}\right|,
$$

and $d_{s}\left(\left(x_{1}, y\right),\left(x_{2}, y\right)\right)=\left|x_{1}-x_{2}\right|$ is the usual Euclidean distance between $x_{1}$ and $x_{2}$. On the other hand, if $y_{1} \neq y_{2}$, the inner distance $d_{s}\left(\left(x_{1}, x_{2}\right),\left(x_{2}, y_{2}\right)\right)=\infty$ since $d_{s}\left(\left(x_{1}, x_{2}\right),\left(x_{2}, y_{2}\right)\right)$ is greater than or equal to the inner distance associated with the snowfalke distance $d^{1 / 2}$ between $y_{1}, y_{2} \in \mathbb{R}$, which is infinite, c.f. [HW 2.1.] In other words,

$$
d_{s}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)= \begin{cases}\left|x_{1}-x_{2}\right| & \text { if } y_{1}=y_{2} \\ \infty & \text { if } y_{1} \neq y_{2}\end{cases}
$$

Hence, $\left(\mathbb{R}^{2}, d\right)$ is an uncountable disjoint union of real lines, each with its standard metric.

Exercise 2. Let $X$ be a length space and $x, y \in X, x \neq y$. Prove that

$$
\operatorname{dist}(x, B(y, r))=|x-y|-r
$$

if $r<|x-y|$.
Proof. By the triangle inequality $|x-y| \leq|x-z|+|z-y|$, for all $z \in B(y, r)$. Since $|z-y|<r$, it follows that $|x-y|-r<|x-z|$. Taking the infimum over all $z \in B(y, r)$, it follows that in any metric space $X$

$$
|x-y|-r \leq \operatorname{dist}(x, B(y, r))
$$

On the other hand, since $X$ is a length space there exists for every $n \in \mathbb{N}^{+}$a path $\gamma_{n}:\left[0, \ell\left(\gamma_{n}\right)\right] \rightarrow X$ from $y$ to $x$ such that

$$
\ell\left(\gamma_{n}\right)=|x-y|+\frac{1}{n}
$$

Now, since $\gamma_{n}$ is continuous there exists a $t_{0} \in\left[0, \ell\left(\gamma_{n}\right)\right]$ such that $\ell\left(\gamma_{n} \mid\left[0, t_{0}\right]\right)=$ $r-1 / n$. In other words, $\ell\left(\gamma_{n} \mid\left[t_{0}, \ell\left(\gamma_{n}\right)\right]\right)=|x-y|-r+2 / n$, and since $\gamma_{n}\left(t_{0}\right) \in$ $B(y, r)$, it follows that

$$
\operatorname{dist}(x, B(y, r)) \leq \ell\left(\gamma_{n} \mid\left[t_{0}, \ell\left(\gamma_{n}\right)\right]\right)=|x-y|-r+2 / n,
$$

for every $n$. Thus, $\operatorname{dist}(x, B(y, r)) \leq|x-y|-r$, from which the claim now follows.

Exercise 3. Prove that the completion of a length space is a length space.

Proof. Let $X$ be a length space, and $\bar{X}$ its completion and $\bar{x}, \bar{y} \in \bar{X}$. Now there exists Cauchy sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ of points in $X$ converging to $\bar{x}$ and $\bar{y}$, respectively. In other words, for any $\varepsilon>0$ there exists an $N_{\varepsilon}$ such that $\left|x_{i}-\bar{x}\right| \leq \varepsilon / 4,\left|y_{i}-\bar{y}\right| \leq \varepsilon / 4$ whenever $i \geq N$. By the triangle inequality,

$$
\left|x_{i}-y_{i}\right| \leq|x-y|+\frac{\varepsilon}{2} .
$$

Now, choose paths $\gamma_{i}: x_{i} \curvearrowright y_{i}$ parametrized by arclength such that $\ell\left(\gamma_{i}\right) \leq$ $\left|x_{i}-y_{i}\right|+\varepsilon / 2$. By continuity, there exists a point $z=\gamma_{i}\left(t_{0}\right)$ such that

$$
\begin{aligned}
& \left|x_{i}-z\right| \leq \frac{\ell\left(\gamma_{i}\right)}{2} \leq \frac{1}{2}\left|x_{i}-y_{i}\right|+\frac{\varepsilon}{4} \leq \frac{1}{2}|x-y|+\frac{\varepsilon}{2} \\
& \left|y_{i}-z\right| \leq \frac{\ell\left(\gamma_{i}\right)}{2} \leq \frac{1}{2}\left|x_{i}-y_{i}\right|+\frac{\varepsilon}{4} \leq \frac{1}{2}|x-y|+\frac{\varepsilon}{2}
\end{aligned}
$$

Now,

$$
|\bar{x}-z| \leq\left|\bar{x}-x_{i}\right|+\left|x_{i}-z\right| \leq \frac{\varepsilon}{4}+\frac{1}{2}|x-y|+\frac{\varepsilon}{2} \leq \frac{1}{2}|x-y|+\frac{3}{4} \varepsilon .
$$

Similarly for $\bar{y}$. Thus, $z$ is an $\varepsilon$-midpoint for $\bar{x}$ and $\bar{y}$ and since this holds for any two points in $\bar{X}$ it follows by [HW 3.5.] that the completion is a length space.

Exercise 4. Construct a complete length space which is not a geodesic space.
Construction. Let $\left(\mathbb{R}^{2}, d\right)$ be the Euclidean plane. Consider the union of segments

$$
T=\bigcup_{n=1}^{\infty}([(-1,0),(0,1 / n)] \cup[(0,1 / n),(1,0)]) \subset \mathbb{R}^{2}
$$

Equip $T$ with the induced path metric, $d_{s}$, from the plane. $\left(T, d_{s}\right)$ is a length space, but not geodesic since $d_{s}((-1,0),(1,0))=2$ but there is no path of length 2 in $T$ joining the points. It is also complete. Namely, without loss of generality assume $\left(x_{n}\right)$ is a Cauchy sequence in $T$ not converging to $(-1,0)$ or $(1,0)$. Thus, the sequence must eventually belong to some $[(-1,0),(0,1 / m)] \cup$ $[(0,1 / m),(1,0)] \subset T$, which is complete in the path metric.

Exercise 5. Construct a locally compact geodesic space whose completion is neither geodesic nor locally compact.

Construction. Let $\left(\mathbb{R}^{2}, d\right)$ be the Euclidean planeand consider the subset

$$
\begin{aligned}
S & =(0,1] \times\{0\} \cup(0,1] \times\{1\} \cup \bigcup_{n=1}^{\infty}\{1 / n\} \times[0,1] \\
& :=(0,1] \times\{0\} \cup(0,1] \times\{1\} \cup \bigcup_{n=1}^{\infty} I_{n}
\end{aligned}
$$

equipped with the induced path metric, $d_{s}$, from the plane. $\left(S, d_{s}\right)$ is a locally compact geodesic space. Consider its metric completion $\bar{S}$. First observe that
$(0,0)$ and $(0,1) \in \bar{S}$ and $\bar{S}$ is not locally compact at these points. To see this, consider the open neighbourhood $B((0, i), 1 / n), i \in\{0,1\}$ and observe that

$$
B((0, i), 1 / n) \cap \bigcup_{m>n} I_{m},
$$

is an open subset of $B((0, i), 1 / n)$ which is not compact. Moreover, the completion is not geodesic since there is no geodesic from $(0,0)$ to $(0,1)$ in $\bar{S}$. Such a geodesic would neccessarly contain points from the plane of the form $(0, s)$, $0<s<1$, but no such points belong to $\bar{S}$.

Note the reason that the completion is not geodesic: the midpoints of the geodesics do not form a Cauchy sequence in $S$, so they do not end up in the completion $\bar{S}$, which consists of the equivalence classes of the Cauchy sequences.

