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Exercise 1. Let (X, d) be a metric space and 0 < α < 1. Find all rectifiable
paths in the metric space (X, dα).

Solution. Clearly all constant paths are rectifiable, so assume γ : [0, 1]→ X
is a non-constant path. Without loss of generality, assume d(γ(0), γ(1)) = ` > 0
and consider the family of γ(0) centred spheres S(γ(0), (k`)/n) for 0 ≤ k ≤ n.
Now by continuity of γ there exists a partition 0 = t0 < . . . , < tn = 1 of [0, 1]
such that γ(tk) ∈ S(γ(0), (k`)/n) and

`(γ) ≥
n∑
k=1

dα(γ(tk), γ(tk−1)) =

n∑
k=1

(
`

n

)α
= `αn1−α

Since 1 − α > 0, it follows that `(γ) → ∞ as n → ∞. In other words, every
non-constant path in the snowflake version of X is non-rectifiable.

Exercise 2. Let f : [0, 1]→ [0, 1] be the Cantor 1/3-function and γ : [0, 1]→ R2

be the path
γ(t) = (t, f(t)).

Compute Vγ(0, t) for t ∈ [0, 1]. Study the existence and values of the metric
derivative |γ̇|(t). Draw conclusions.

Proof. First observe that

k∑
i=1

(
(ti − ti−1)2 + (f(ti)− f(ti−1))2

)1/2 ≤ k∑
i=1

(ti − ti−1) + (f(ti)− f(ti−1)).

Thus since both t 7→ t and t 7→ f(t) are increasing positive functions it follows
by [Re I, Lemma 3.58] that

Vγ(0, t) ≤ t+ f(t).

We claim that t+ f(t) ≤ Vγ(0, t), from which it follows that Vγ(0, t) = t+ f(t).
Fix t ∈ (0, 1] and some ε > 0. Now, there exists a j ∈ N such that

m

[0, t] \
2j⋃
k=1

Jj,k

 ≥ t− ε,
in other words the measure of the intersection of [0, t] with the j’th generation
of the Cantor 1/3-set has a measure less than ε. Here the Jj,k’s are what is left
of the interval I in the j’th generation, c.f. [Re I, 1.16]. Let 0 = t0 < · · · <
tN−1 ≤ tN = t be a partition of [0, t] consisting of the endpoints of the intervals
Jj,k ∩ [0, t] as above. Now, write

N∑
i=1

|γ(ti)− γ(ti−1)| =
∑

(ti−1,ti)∈I

|γ(ti)− γ(ti−1)|+
∑

(ti−1,ti)∈J

|γ(ti)− γ(ti−1)|
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where the first sum contains the terms in between which f is constant: that is
(ti−1, ti) ∈ I if ti ∈ Jj,k+1 left endpoint, and ti−1 ∈ Jj,k right endpoint, and the
second sum the terms where f is increasing: that is (ti−1, ti) ∈ J if ti and ti−1
are the right and left endpoints of Jj,k respectively. Now,

N∑
i=1

|γ(ti)− γ(ti−1)| =
∑

(ti−1,ti)∈I

|γ(ti)− γ(ti−1)|+
∑

(ti−1,ti)∈J

|γ(ti)− γ(ti−1)|

≥ t− ε+
∑

(ti−1,ti)∈J

|γ(ti)− γ(ti−1)|

≥ t− ε+
∑

(ti−1,ti)∈J

|f(ti)− f(ti−1)|

= t− ε+ f(t), (1)

and so Vγ(0, t) ≥ t + f(t). Hence, we conclude that `(γ) = 2. On the other
hand, f ′(t) = 0 a.e. in I = [0, 1], c.f. [Re I, 1.21], from which it follows that

the metric derivative |γ̇|(t) = | ˙(t, f(t))|(t) = |(1, f ′(t))|(t) = 1 a.e. in I. In
particular, Theorem 1.40 does not hold for γ, for if it would, then l(γ) = 1, a
contradiction.

Exercise 3. Construct a rectifiably connected metric space (X, d) such that
τds * τd. In other words, that there exists open sets in the topology given by the
inner metric ds that are not open in the original topology given by d.

Solution Consider the ”comb”

C = {(x, 0) ∈ R2 : x ∈ R} ∪
⋃
q∈Q

Tq,

consisting of the real line with a tooth Tq = {(q, x) ∈ R2 : x ∈ [0, 1]} attached to
each rational q ∈ Q. Consider a point (q, 1/2) ∈ C. In the topology induced by
the path metric B((q, 1/2), r/4) ⊂ Tq is an open neighbourhood of this point.
However, in the topology induced by the standard metric from R2 there is no
open ball of this form.

Exercise 4. Prove that the metric spaces (R2, d1) and (R2, d∞) are not uniquely
geodesic spaces by giving examples of points x and y that can be joined by more
than one geodesic

Proof. First consider R2 with the Manhattan distance

d1((x1, y1), (x2, y2)) = ‖(x1, y1)− (x2, y2)‖1 = |x1 − x2|+ |y1 − y2|.

Choose (x1, y1) = (0, 0) and (x2, y2) = (1, 1). A straightforward calculation
shows that both the line γ1 : [0, 2] → R2 for which γ(t) = (t/2, t/2), and the
”staircase” γ2 : [0, 2] → R2 for which γ(t) = (t, 0) for t ∈ [0, 1] and γ(t) =
(1, t − 1) for t ∈ (1, 2] are geodesics joining (0, 0) to (1, 1). Next, consider R2

with the supremum metric

d∞((x1, y1), (x2, y2)) = ‖(x1, y1)− (x2, y2)‖∞ = max{|x1 − x2|, |y1 − y2|}.

Choose (x1, y1) = (0, 0) and (x2, y2) = (1, 1). Now γ1 : [0, 1] → R2 for which
γ1(t) = (t, t) is a geodesic between the two points. Similarly γ1 : [0, 1]→ R2 for
which γ1(t) = (t, t2) is a geodesic joining these points.
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As topological spaces (R2, d1) and (R2, d∞) are equivalent, and homeomor-
phic to (R2, d2). However, (R2, d2) is uniquely geodesic. So, being uniquely
geodesic is not a topological invariant.

Exercise 5. Let X be a complete metric space. Then, X is a length space if
and only if for all x, y ∈ X and all ε > 0, there exists a z ∈ X such that

max{d(x, z), d(y, z)} ≤ 1

2
d(x, y) + ε.

Proof. Suppose X is a length space. Then for any x, y ∈ X and ε > 0 ,there
exists a path γε : [0, `(γε)] → X from x to y such that l(γε) ≤ d(x, y) + ε.
Now, since γε is continuous, sγε is continuous and so there exists t0 ∈ [0, `(γε)]
such that sγε(t0) = l(γε)/2. Set z = γε(t0). Now, d(x, z) ≤ l(γε)/2 and
d(y, z) ≤ l(γε)/2, so X has ε-midpoints. On the other hand, suppose X has the
ε-midpoint property. Fix x, y ∈ X, ε > 0, and define σ : [0, 1] → X as follows.
Set σ̄(0) = x ∈ X, σ̄(1) = y ∈ X and define σ̄ for all dyadic rational numbers
as follows. Let σ̄(1/2) to be any fixed ε/4-midpoint m1 for x and y. Now σ̄ is
(d(x, y) + ε/2)-Lipschitz for x, y,m1 ∈ X. Next, define σ̄(1/4) to be any fixed
ε/8-midpoint m2 for x and m1, and σ̄(3/4) as any fixed ε/8-midpoint m3 for
m1 and y. Thus, σ̄ is (d(x, y)+(1/2+1/4)ε)-Lipschitz for x, y,m1,m2,m3 ∈ X.
Let the next approximate midpoints be ε/128-midpoints. For these points σ̄
is (d(x, y) + (1/2 + 1/4 + 1/16)ε)-Lipschitz. Continuing in the same manner,
observing that the increments above form a geometric series converging to ε,
we conclude that σ̄ is (d(x, y) + ε)-Lipschitz for all dyadic rational numbers in
[0, 1]. Since X is complete and the dyadic numbers are dense in [0, 1], it follows
by Theorem 1.28 that σ̄ has a (d(x, y) + ε)-Lipschitz extension σ : [0, 1] → X.
Moreover, d(x, y) ≤ l(σ) ≤ d(x, y) + ε by Theorem 1.40. Since this holds for all
choices of ε > 0 and x, y ∈ X, it follows that X is a length space.
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