Metric Geometry Fall 2013 HW 2 (JK)

Exercise 1. Let (X, d) be a metric space and $0 < \alpha < 1$. Find all rectifiable paths in the metric space (X, d^{α}) .

Solution. Clearly all constant paths are rectifiable, so assume $\gamma: [0, 1] \to X$ is a non-constant path. Without loss of generality, assume $d(\gamma(0), \gamma(1)) = \ell > 0$ and consider the family of $\gamma(0)$ centred spheres $S(\gamma(0), (k\ell)/n)$ for $0 \le k \le n$. Now by continuity of γ there exists a partition $0 = t_0 < \ldots, < t_n = 1$ of [0, 1]such that $\gamma(t_k) \in S(\gamma(0), (k\ell)/n)$ and

$$\ell(\gamma) \ge \sum_{k=1}^n d^{\alpha}(\gamma(t_k), \gamma(t_{k-1})) = \sum_{k=1}^n \left(\frac{\ell}{n}\right)^{\alpha} = \ell^{\alpha} n^{1-\alpha}$$

Since $1 - \alpha > 0$, it follows that $\ell(\gamma) \to \infty$ as $n \to \infty$. In other words, every non-constant path in the snowflake version of X is non-rectifiable.

Exercise 2. Let $f: [0,1] \to [0,1]$ be the Cantor 1/3-function and $\gamma: [0,1] \to \mathbb{R}^2$ be the path

$$\gamma(t) = (t, f(t)).$$

Compute $V_{\gamma}(0,t)$ for $t \in [0,1]$. Study the existence and values of the metric derivative $|\dot{\gamma}|(t)$. Draw conclusions.

Proof. First observe that

$$\sum_{i=1}^{k} \left((t_i - t_{i-1})^2 + (f(t_i) - f(t_{i-1}))^2 \right)^{1/2} \le \sum_{i=1}^{k} (t_i - t_{i-1}) + (f(t_i) - f(t_{i-1})).$$

Thus since both $t \mapsto t$ and $t \mapsto f(t)$ are increasing positive functions it follows by [Re I, Lemma 3.58] that

$$V_{\gamma}(0,t) \le t + f(t).$$

We claim that $t + f(t) \leq V_{\gamma}(0, t)$, from which it follows that $V_{\gamma}(0, t) = t + f(t)$. Fix $t \in (0, 1]$ and some $\varepsilon > 0$. Now, there exists a $j \in \mathbb{N}$ such that

$$m\left([0,t]\setminus\bigcup_{k=1}^{2^j}J_{j,k}\right)\geq t-\varepsilon,$$

in other words the measure of the intersection of [0, t] with the j'th generation of the Cantor 1/3-set has a measure less than ε . Here the $J_{j,k}$'s are what is left of the interval I in the j'th generation, c.f. [Re I, 1.16]. Let $0 = t_0 < \cdots < t_{N-1} \le t_N = t$ be a partition of [0, t] consisting of the endpoints of the intervals $J_{j,k} \cap [0, t]$ as above. Now, write

$$\sum_{i=1}^{N} |\gamma(t_i) - \gamma(t_{i-1})| = \sum_{(t_{i-1}, t_i) \in \mathcal{I}} |\gamma(t_i) - \gamma(t_{i-1})| + \sum_{(t_{i-1}, t_i) \in J} |\gamma(t_i) - \gamma(t_{i-1})|$$

where the first sum contains the terms in between which f is constant: that is $(t_{i-1}, t_i) \in \mathcal{I}$ if $t_i \in J_{j,k+1}$ left endpoint, and $t_{i-1} \in J_{j,k}$ right endpoint, and the second sum the terms where f is increasing: that is $(t_{i-1}, t_i) \in \mathcal{J}$ if t_i and t_{i-1} are the right and left endpoints of $J_{j,k}$ respectively. Now,

$$\sum_{i=1}^{N} |\gamma(t_i) - \gamma(t_{i-1})| = \sum_{(t_{i-1}, t_i) \in I} |\gamma(t_i) - \gamma(t_{i-1})| + \sum_{(t_{i-1}, t_i) \in J} |\gamma(t_i) - \gamma(t_{i-1})|$$

$$\geq t - \varepsilon + \sum_{(t_{i-1}, t_i) \in J} |\gamma(t_i) - \gamma(t_{i-1})|$$

$$\geq t - \varepsilon + \sum_{(t_{i-1}, t_i) \in J} |f(t_i) - f(t_{i-1})|$$

$$= t - \varepsilon + f(t), \qquad (1)$$

and so $V_{\gamma}(0,t) \geq t + f(t)$. Hence, we conclude that $\ell(\gamma) = 2$. On the other hand, f'(t) = 0 a.e. in I = [0,1], c.f. [Re I, 1.21], from which it follows that the metric derivative $|\dot{\gamma}|(t) = |(t,\dot{f}(t))|(t) = |(1,f'(t))|(t) = 1$ a.e. in I. In particular, Theorem 1.40 does not hold for γ , for if it would, then $l(\gamma) = 1$, a contradiction.

Exercise 3. Construct a rectifiably connected metric space (X, d) such that $\tau_{d_s} \not\subseteq \tau_d$. In other words, that there exists open sets in the topology given by the inner metric d_s that are not open in the original topology given by d.

Solution Consider the "comb"

$$C = \{(x,0) \in \mathbb{R}^2 \colon x \in \mathbb{R}\} \cup \bigcup_{q \in \mathbb{Q}} T_q$$

consisting of the real line with a tooth $T_q = \{(q, x) \in \mathbb{R}^2 : x \in [0, 1]\}$ attached to each rational $q \in \mathbb{Q}$. Consider a point $(q, 1/2) \in C$. In the topology induced by the path metric $B((q, 1/2), r/4) \subset T_q$ is an open neighbourhood of this point. However, in the topology induced by the standard metric from \mathbb{R}^2 there is no open ball of this form.

Exercise 4. Prove that the metric spaces (\mathbb{R}^2, d_1) and (\mathbb{R}^2, d_∞) are not uniquely geodesic spaces by giving examples of points x and y that can be joined by more than one geodesic

Proof. First consider \mathbb{R}^2 with the Manhattan distance

$$d_1((x_1, y_1), (x_2, y_2)) = ||(x_1, y_1) - (x_2, y_2)||_1 = |x_1 - x_2| + |y_1 - y_2|.$$

Choose $(x_1, y_1) = (0, 0)$ and $(x_2, y_2) = (1, 1)$. A straightforward calculation shows that both the line $\gamma_1 \colon [0, 2] \to \mathbb{R}^2$ for which $\gamma(t) = (t/2, t/2)$, and the "staircase" $\gamma_2 \colon [0, 2] \to \mathbb{R}^2$ for which $\gamma(t) = (t, 0)$ for $t \in [0, 1]$ and $\gamma(t) = (1, t - 1)$ for $t \in (1, 2]$ are geodesics joining (0, 0) to (1, 1). Next, consider \mathbb{R}^2 with the supremum metric

$$d_{\infty}((x_1, y_1), (x_2, y_2)) = ||(x_1, y_1) - (x_2, y_2)||_{\infty} = \max\{|x_1 - x_2|, |y_1 - y_2|\}.$$

Choose $(x_1, y_1) = (0, 0)$ and $(x_2, y_2) = (1, 1)$. Now $\gamma_1 \colon [0, 1] \to \mathbb{R}^2$ for which $\gamma_1(t) = (t, t)$ is a geodesic between the two points. Similarly $\gamma_1 \colon [0, 1] \to \mathbb{R}^2$ for which $\gamma_1(t) = (t, t^2)$ is a geodesic joining these points.

As topological spaces (\mathbb{R}^2, d_1) and (\mathbb{R}^2, d_∞) are equivalent, and homeomorphic to (\mathbb{R}^2, d_2) . However, (\mathbb{R}^2, d_2) is uniquely geodesic. So, being uniquely geodesic is not a topological invariant.

Exercise 5. Let X be a complete metric space. Then, X is a length space if and only if for all $x, y \in X$ and all $\varepsilon > 0$, there exists a $z \in X$ such that

$$\max\{d(x,z), d(y,z)\} \le \frac{1}{2}d(x,y) + \varepsilon.$$

Proof. Suppose X is a length space. Then for any $x, y \in X$ and $\varepsilon > 0$, there exists a path $\gamma_{\varepsilon} \colon [0, \ell(\gamma_{\varepsilon})] \to X$ from x to y such that $l(\gamma_{\varepsilon}) \leq d(x, y) + \varepsilon$. Now, since γ_{ε} is continuous, $s_{\gamma_{\varepsilon}}$ is continuous and so there exists $t_0 \in [0, \ell(\gamma_{\varepsilon})]$ such that $s_{\gamma_{\varepsilon}}(t_0) = l(\gamma_{\varepsilon})/2$. Set $z = \gamma_{\varepsilon}(t_0)$. Now, $d(x, z) \leq l(\gamma_{\varepsilon})/2$ and $d(y,z) \leq l(\gamma_{\varepsilon})/2$, so X has ε -midpoints. On the other hand, suppose X has the ε -midpoint property. Fix $x, y \in X$, $\varepsilon > 0$, and define $\sigma : [0, 1] \to X$ as follows. Set $\bar{\sigma}(0) = x \in X$, $\bar{\sigma}(1) = y \in X$ and define $\bar{\sigma}$ for all dyadic rational numbers as follows. Let $\bar{\sigma}(1/2)$ to be any fixed $\varepsilon/4$ -midpoint m_1 for x and y. Now $\bar{\sigma}$ is $(d(x,y) + \varepsilon/2)$ -Lipschitz for $x, y, m_1 \in X$. Next, define $\overline{\sigma}(1/4)$ to be any fixed $\varepsilon/8$ -midpoint m_2 for x and m_1 , and $\overline{\sigma}(3/4)$ as any fixed $\varepsilon/8$ -midpoint m_3 for m_1 and y. Thus, $\bar{\sigma}$ is $(d(x,y) + (1/2 + 1/4)\varepsilon)$ -Lipschitz for $x, y, m_1, m_2, m_3 \in X$. Let the next approximate midpoints be $\varepsilon/128$ -midpoints. For these points $\bar{\sigma}$ is $(d(x,y) + (1/2 + 1/4 + 1/16)\varepsilon)$ -Lipschitz. Continuing in the same manner, observing that the increments above form a geometric series converging to ε , we conclude that $\bar{\sigma}$ is $(d(x,y) + \varepsilon)$ -Lipschitz for all dyadic rational numbers in [0,1]. Since X is complete and the dyadic numbers are dense in [0,1], it follows by Theorem 1.28 that $\bar{\sigma}$ has a $(d(x,y) + \varepsilon)$ -Lipschitz extension $\sigma \colon [0,1] \to X$. Moreover, $d(x, y) \le l(\sigma) \le d(x, y) + \varepsilon$ by Theorem 1.40. Since this holds for all choices of $\varepsilon > 0$ and $x, y \in X$, it follows that X is a length space.