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Exercise 1. Let (X, d) be a metric space.

(a) Prove that (X, dα), 0 < α < 1, is a metric space.

(b) Prove that (X, d0), where

d0(x, y) =
d(x, y)

1 + d(x, y)
,

is a metric space.

(c) Study whether the topologies τd, τdα , and τd0 are the same.

Proof. (a) Only the triangle inequality is non-trivial. dα is of the form f ◦ d
where f : [0,∞)→ [0,∞) is concave such that f(0) = 0. Explicitly, f(x) = xα,
which is concave since f ′′(x) = α(α− 1)xα−2 ≤ 0. By concavity,

tf(x) + (1− t)f(y) ≤ f(tx+ (1− t)y),

for x, y ∈ [0,∞), t ∈ [0, 1]. In particular, f(tx) ≥ tf(x) setting y = 0 above.
Thus,

f(x) = f(x
x+ y

x+ y
) ≥ x

x+ y
f(x+ y),

f(y) = f(y
x+ y

x+ y
) ≥ y

x+ y
f(x+ y).

From this we see that f is subadditive, f(x + y) ≤ f(x) + f(y). Thus for
x, y, z ∈ X, f(d(x, z)) ≤ f(d(x, y) + d(y, z)) ≤ f(d(x, y)) + f(d(y, z)). that
is, f ◦ d is a metric. Taking f(x) = xα shows that the snowflake version of
X, (X, dα) is a metric space. (b) follows from the proof of (a) observing that
f : [0,∞)→ [0,∞)

f(x) =
x

1 + x
,

is a concave function, g′′(x) = −2(1 + x)−3 < 0, f(0) = 0, and d0 = g ◦ d. (c)
Since a concave function is continuous, id : (X, d) → (X, f ◦ d) and id: (X, f ◦
d) → (X, d) are continuous, and it follows that (X, d) is homeomorphic to
(X, f ◦ d). This shows that the topologies τd, τdα , and τd0 are the same, and
that concave functions map metrics to metrics and the topologies induced by
the metrics are equivalent.

Exercise 2 (Kuratowski embedding). Prove that every metric space X can be
isometrically embedded into the Banach space `∞(X).

Proof. Fix any x0 ∈ X. For each y ∈ X define a map sy : X → R by

sy(x) = |y − x| − |x− x0|.

By the reverse triangle inequality

|sy(x)| = ||y − x| − |x− x0|| ≤ |y − x0|,
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so ‖sy‖∞ ≤ |y−x0| <∞, and sy ∈ l∞(X). We claim that y 7→ sy is an isometric
embedding X → l∞(X). First observe that

|sy(x)− sz(x)| = ||x− y| − |x− z|| ≤ |y − z|,

so ‖sy − sz‖∞ ≤ |y − z|. However, for x = y, |sy(x) − sz(x)| = |y − z|, so
‖sy − sz‖∞ = |y − z|. Thus, y 7→ sy is an isometric embedding.

A drawback with the Kuratowski embedding is that `∞(X) depends on X.
Thus, if X and Y are two distinct metric spaces, the Kuratowski embedding
embeds both metric spaces into two possibly distinct spaces. At least for sep-
arable metric spaces there exists a universal metric space, `∞(N), into which
all separable metric spaces can be isometrically embedded. This embedding,
known as the Fréchet embedding, can be used to define the Gromov-Hausdorff
distance between separable metric spaces, making it possible to speak of limits
of spaces.

Exercise 3 (Fréchet embedding). Prove that every separable metric space can
be isometrically embedded into the Banach space `∞(N).

Proof. By separability, fix {xi : i ∈ N} dense in X. For each xi define the map

x 7→ (sxi(x))i,

where sxi : X → R is given by sxi(x) = |x − xi| − |xi − x0|. As previously,
sxi(x) ≤ |x − x0| for all i ∈ N so (sxi(x))i ∈ `∞(N) for each x ∈ X. Thus,
we have a map X → `∞(N) and it remains to show that it is an isometric
embedding. Towards this observe that

|sxi(x)− sxi(y)| = ||x− xi| − |y − xi|| ≤ |x− y|.

However, since {xi : i ∈ N} is dense in X there exists a subsequence xj → x, so
‖(sxi(x))i − (sxi(y))i‖∞ = |x− y|.

Exercise 4 (Cantor’s Intersection Theorem). Prove that a metric space X is
complete if and only if it has the following property: if every sequence (Xn)
of non-empty, closed subsets of X such that Xn+1 ⊂ Xn for every n and
diam(Xn)→ 0, then the sets Xn have a common point, i.e. ∩nXn 6= ∅.

Proof. Suppose X is complete. For each n, pick xn ∈ Xn. Since the sequence
is nested it follows that for m > n, d(xm, xn) ≤ diam(Xn) → 0 as n → ∞.
Thus, (xn) is a Cauchy sequence in X and by completeness converges to a point
x ∈ X. We claim that x ∈ ∩nXn. But for any m, {xm, xm+1, . . . } ⊂ Xm,
so x ∈ Xm = Xm since Xm is closed. Thus we conclude that x ∈ Xm for
any m, in other words x ∈ ∩nXn. Since X is Hausdorff, this is the only point
in the intersection. On the other hand, suppose any nested sequence with the
listed properties has the non-empty intersection property. Let (xn) be any
Cauchy sequence and consider the tails Tn = {xn, xn+1, . . . }. Since (xn) is
Cauchy diam(Tn) → 0, and hence diam(Tn) → 0. Namely, since Tn ⊂ Tn,
diam(Tn) ≤ diam(Tn). On the other hand, for any points x, y ∈ Tn, both
B(x, ε) ∩ Tn and B(y, ε) ∩ Tn are non-empty. Pick points x′ and y′ from the
intersections, respectively. Now,

d(x, y) ≤ d(x, x′) + d(x′, y′) + d(y′, y) ≤ d(x′, y′) + 2ε,
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from which it follows that diam(Tn) ≤ diam(Tn). Thus, we have constructed
a nested sequence (Tn) of closed non-empty sets whose diameter converges to
zero. By the non-empty intersection property ∩nTn contains a point x ∈ X.
Moreover, d(xn, x) ≤ diam(Tn)→ 0, so xn → x in X proving completeness.

Exercise 5. (a) Let f : X → Y be a bi-Lipschitz homeomorphism. Prove that
X is complete if and only if Y is complete.

(b) Give an example of homeomorphic metric spaces such that X is complete
and Y is not.

Proof. (a) Suppose X is complete and let (yi) be any Cauchy sequence in Y .
By surjectivity it is of the form (f(xi)). We claim that (f(xi)) converges to a
point in Y . Since f is bi-Lipschitz

|f(xi)− f(xj)| ≥
1

L
|xi − xj |,

it follows that (xi) is a Cauchy sequence in X and converges to x by complete-
ness. Again by the bi-Lipschitz property |f(xi) − f(x)| ≤ L|xi − x| → 0,and
hence the sequence (yn) converges to y = f(x) ∈ Y . Similarly for Y complete.

(b) Let f : R → (−1, 1) be given by f(x) =
x

|x|+ 1
where R has the standard

topology and (−1, 1) the induced topology from R. Clearly f is a homeomor-
phism, R is complete but the sequence (1 − 1/n) does not converge to a point
in (−1, 1).

In particular, completeness is not a topological invariant. However, complete
metrizability is. If f : X → Y is a homeomorphism and X is a complete metric
space, there exists a metric on Y making it complete. In particular, there exists
a metric on (−1, 1) making it complete.

Exercise 6. Let X = (R2, d∞) where d∞ is the metric given by ‖ · ‖∞ and let
Y = R2 with the standard metric. Let

A = {(−1, 1), (1,−1), (1, 1)} ⊂ X

and f : A→ R2,

f(−1, 1) = (−1, 0), f(1,−1) = (1, 0), f(1, 1) = (0,
√

3).

Show that f is 1-Lipshitz but has no 1-Lipschitz extension to A ∪ {(0, 0)}.

Solution. Denote the standard metric on R2 by dE . By a straightforward
computation

dE(f(−1, 1), f(1,−1)) = dE((−1, 0), (1, 0)) = 2

dE(f(−1, 1), f(1, 1)) = dE((−1, 0), (0,
√

3)) = 2

dE(f(1,−1), f(1, 1)) = dE((1, 0), (0,
√

3)) = 2.

On the other hand recalling that d∞((x1, y1), (x2, y2) = max{|x1−x2|, |y1−y2|},

d∞((−1, 1), (1,−1)) = 2

d∞((−1, 1), (1, 1)) = 2

d∞((1,−1), (1, 1)) = 2.
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Thus, f is 1-Lipschitz. Denote f(0, 0) = (s, t) and note that d∞((0, 0), (x, y)) =
1 for all (x, y) ∈ A. Thus, for the extension of f we need dE(f(0, 0), (x, y)) =
dE((s, t), (x, y)) ≤ 1 for it to be 1-Lipschitz. If s > 0 this fails for the point
(x, y) = (−1, 1), if s < 0 this fails for the point (x, y) = (1,−1), and if s = 0 it
must hold that |t− y| = 0 for y = −1 or 1, which is impossible.

Note that f has a
√

2-Lipschitz extension to the whole of X, Corollary 1.26.
On the other hand this exercise shows that Kirszbraun’s theorem does not hold
since X does not have an Euclidean metric.
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