Metric Geometry Fall 2013 HW 1 (JK)

Exercise 1. Let (X, d) be a metric space.

- (a) Prove that (X, d^{α}) , $0 < \alpha < 1$, is a metric space.
- (b) Prove that (X, d_0) , where

$$d_0(x,y) = \frac{d(x,y)}{1 + d(x,y)},$$

is a metric space.

(c) Study whether the topologies τ_d , $\tau_{d^{\alpha}}$, and τ_{d_0} are the same.

Proof. (a) Only the triangle inequality is non-trivial. d^{α} is of the form $f \circ d$ where $f:[0,\infty)\to[0,\infty)$ is concave such that f(0)=0. Explicitly, $f(x)=x^{\alpha}$, which is concave since $f''(x)=\alpha(\alpha-1)x^{\alpha-2}\leq 0$. By concavity,

$$tf(x) + (1-t)f(y) \le f(tx + (1-t)y),$$

for $x, y \in [0, \infty)$, $t \in [0, 1]$. In particular, $f(tx) \ge tf(x)$ setting y = 0 above. Thus,

$$f(x) = f(x\frac{x+y}{x+y}) \ge \frac{x}{x+y}f(x+y),$$

$$f(y) = f(y\frac{x+y}{x+y}) \ge \frac{y}{x+y}f(x+y).$$

From this we see that f is subadditive, $f(x+y) \leq f(x) + f(y)$. Thus for $x,y,z \in X$, $f(d(x,z)) \leq f(d(x,y) + d(y,z)) \leq f(d(x,y)) + f(d(y,z))$. that is, $f \circ d$ is a metric. Taking $f(x) = x^{\alpha}$ shows that the snowflake version of X, (X,d^{α}) is a metric space. (b) follows from the proof of (a) observing that $f:[0,\infty) \to [0,\infty)$

$$f(x) = \frac{x}{1+x},$$

is a concave function, $g''(x) = -2(1+x)^{-3} < 0$, f(0) = 0, and $d_0 = g \circ d$. (c) Since a concave function is continuous, id: $(X,d) \to (X,f \circ d)$ and id: $(X,f \circ d) \to (X,d)$ are continuous, and it follows that (X,d) is homeomorphic to $(X,f \circ d)$. This shows that the topologies τ_d , $\tau_{d^{\alpha}}$, and τ_{d_0} are the same, and that concave functions map metrics to metrics and the topologies induced by the metrics are equivalent.

Exercise 2 (Kuratowski embedding). Prove that every metric space X can be isometrically embedded into the Banach space $\ell^{\infty}(X)$.

Proof. Fix any $x_0 \in X$. For each $y \in X$ define a map $s_y : X \to \mathbb{R}$ by

$$s_y(x) = |y - x| - |x - x_0|.$$

By the reverse triangle inequality

$$|s_y(x)| = ||y - x| - |x - x_0|| \le |y - x_0|,$$

so $||s_y||_{\infty} \le |y-x_0| < \infty$, and $s_y \in l^{\infty}(X)$. We claim that $y \mapsto s_y$ is an isometric embedding $X \to l^{\infty}(X)$. First observe that

$$|s_y(x) - s_z(x)| = ||x - y| - |x - z|| \le |y - z|,$$

so
$$||s_y - s_z||_{\infty} \le |y - z|$$
. However, for $x = y$, $|s_y(x) - s_z(x)| = |y - z|$, so $||s_y - s_z||_{\infty} = |y - z|$. Thus, $y \mapsto s_y$ is an isometric embedding.

A drawback with the Kuratowski embedding is that $\ell^{\infty}(X)$ depends on X. Thus, if X and Y are two distinct metric spaces, the Kuratowski embedding embeds both metric spaces into two possibly distinct spaces. At least for separable metric spaces there exists a universal metric space, $\ell^{\infty}(\mathbb{N})$, into which all separable metric spaces can be isometrically embedded. This embedding, known as the Fréchet embedding, can be used to define the Gromov-Hausdorff distance between separable metric spaces, making it possible to speak of limits of spaces.

Exercise 3 (Fréchet embedding). Prove that every separable metric space can be isometrically embedded into the Banach space $\ell^{\infty}(\mathbb{N})$.

Proof. By separability, fix $\{x_i: i \in \mathbb{N}\}$ dense in X. For each x_i define the map

$$x \mapsto (s_{x_i}(x))_i$$

where $s_{x_i}: X \to \mathbb{R}$ is given by $s_{x_i}(x) = |x - x_i| - |x_i - x_0|$. As previously, $s_{x_i}(x) \le |x - x_0|$ for all $i \in \mathbb{N}$ so $(s_{x_i}(x))_i \in \ell^{\infty}(\mathbb{N})$ for each $x \in X$. Thus, we have a map $X \to \ell^{\infty}(\mathbb{N})$ and it remains to show that it is an isometric embedding. Towards this observe that

$$|s_{x_i}(x) - s_{x_i}(y)| = ||x - x_i| - |y - x_i|| \le |x - y|.$$

However, since $\{x_i : i \in \mathbb{N}\}$ is dense in X there exists a subsequence $x_j \to x$, so $||(s_{x_i}(x))_i - (s_{x_i}(y))_i||_{\infty} = |x - y|$.

Exercise 4 (Cantor's Intersection Theorem). Prove that a metric space X is complete if and only if it has the following property: if every sequence (X_n) of non-empty, closed subsets of X such that $X_{n+1} \subset X_n$ for every n and $\operatorname{diam}(X_n) \to 0$, then the sets X_n have a common point, i.e. $\cap_n X_n \neq \emptyset$.

Proof. Suppose X is complete. For each n, pick $x_n \in X_n$. Since the sequence is nested it follows that for m > n, $d(x_m, x_n) \le \operatorname{diam}(X_n) \to 0$ as $n \to \infty$. Thus, (x_n) is a Cauchy sequence in X and by completeness converges to a point $x \in X$. We claim that $x \in \cap_n X_n$. But for any m, $\{x_m, x_{m+1}, \ldots\} \subset X_m$, so $x \in \overline{X_m} = X_m$ since X_m is closed. Thus we conclude that $x \in X_m$ for any m, in other words $x \in \cap_n X_n$. Since X is Hausdorff, this is the only point in the intersection. On the other hand, suppose any nested sequence with the listed properties has the non-empty intersection property. Let (x_n) be any Cauchy sequence and consider the tails $T_n = \{x_n, x_{n+1}, \ldots\}$. Since (x_n) is Cauchy $\operatorname{diam}(T_n) \to 0$, and hence $\operatorname{diam}(\overline{T_n}) \to 0$. Namely, since $T_n \subset \overline{T_n}$, $\operatorname{diam}(T_n) \le \operatorname{diam}(\overline{T_n})$. On the other hand, for any points $x, y \in \overline{T_n}$, both $B(x,\varepsilon) \cap T_n$ and $B(y,\varepsilon) \cap T_n$ are non-empty. Pick points x' and y' from the intersections, respectively. Now,

$$d(x,y) \le d(x,x') + d(x',y') + d(y',y) \le d(x',y') + 2\varepsilon,$$

from which it follows that $\operatorname{diam}(\overline{T_n}) \leq \operatorname{diam}(T_n)$. Thus, we have constructed a nested sequence $(\overline{T_n})$ of closed non-empty sets whose diameter converges to zero. By the non-empty intersection property $\cap_n \overline{T_n}$ contains a point $x \in X$. Moreover, $d(x_n, x) \leq \operatorname{diam}(\overline{T_n}) \to 0$, so $x_n \to x$ in X proving completeness. \square

Exercise 5. (a) Let $f: X \to Y$ be a bi-Lipschitz homeomorphism. Prove that X is complete if and only if Y is complete.

(b) Give an example of homeomorphic metric spaces such that X is complete and Y is not.

Proof. (a) Suppose X is complete and let (y_i) be any Cauchy sequence in Y. By surjectivity it is of the form $(f(x_i))$. We claim that $(f(x_i))$ converges to a point in Y. Since f is bi-Lipschitz

$$|f(x_i) - f(x_j)| \ge \frac{1}{L} |x_i - x_j|,$$

it follows that (x_i) is a Cauchy sequence in X and converges to x by completeness. Again by the bi-Lipschitz property $|f(x_i) - f(x)| \le L|x_i - x| \to 0$, and hence the sequence (y_n) converges to $y = f(x) \in Y$. Similarly for Y complete. (b) Let $f: \mathbb{R} \to (-1,1)$ be given by $f(x) = \frac{x}{|x|+1}$ where \mathbb{R} has the standard topology and (-1,1) the induced topology from \mathbb{R} . Clearly f is a homeomorphism, \mathbb{R} is complete but the sequence (1-1/n) does not converge to a point in (-1,1).

In particular, completeness is not a topological invariant. However, complete metrizability is. If $f: X \to Y$ is a homeomorphism and X is a complete metric space, there exists a metric on Y making it complete. In particular, there exists a metric on (-1,1) making it complete.

Exercise 6. Let $X = (\mathbb{R}^2, d_{\infty})$ where d_{∞} is the metric given by $\|\cdot\|_{\infty}$ and let $Y = \mathbb{R}^2$ with the standard metric. Let

$$A = \{(-1,1), (1,-1), (1,1)\} \subset X$$

and $f: A \to \mathbb{R}^2$,

$$f(-1,1) = (-1,0), f(1,-1) = (1,0), f(1,1) = (0,\sqrt{3}).$$

Show that f is 1-Lipshitz but has no 1-Lipschitz extension to $A \cup \{(0,0)\}$.

Solution. Denote the standard metric on \mathbb{R}^2 by d_E . By a straightforward computation

$$d_E(f(-1,1), f(1,-1)) = d_E((-1,0), (1,0)) = 2$$

$$d_E(f(-1,1), f(1,1)) = d_E((-1,0), (0,\sqrt{3})) = 2$$

$$d_E(f(1,-1), f(1,1)) = d_E((1,0), (0,\sqrt{3})) = 2.$$

On the other hand recalling that $d_{\infty}((x_1, y_1), (x_2, y_2) = \max\{|x_1 - x_2|, |y_1 - y_2|\},$

$$d_{\infty}((-1,1),(1,-1)) = 2$$

$$d_{\infty}((-1,1),(1,1)) = 2$$

$$d_{\infty}((1,-1),(1,1)) = 2.$$

Thus, f is 1-Lipschitz. Denote f(0,0)=(s,t) and note that $d_{\infty}((0,0),(x,y))=1$ for all $(x,y)\in A$. Thus, for the extension of f we need $d_E(f(0,0),(x,y))=d_E((s,t),(x,y))\leq 1$ for it to be 1-Lipschitz. If s>0 this fails for the point (x,y)=(-1,1), if s<0 this fails for the point (x,y)=(1,-1), and if s=0 it must hold that |t-y|=0 for y=-1 or 1, which is impossible.

Note that f has a $\sqrt{2}$ -Lipschitz extension to the whole of X, Corollary 1.26. On the other hand this exercise shows that Kirszbraun's theorem does not hold since X does not have an Euclidean metric.