Metric Geometry
Fall 2013
HW 1 (JK)

Exercise 1. Let (X,d) be a metric space.
(a) Prove that (X,d*), 0 < o < 1, is a metric space.

(b) Prove that (X,dy), where

__d(z,y)
do(x,y) = TS d(y)

1S a metric space.
(¢) Study whether the topologies T4, T4, and T4, are the same.

Proof. (a) Only the triangle inequality is non-trivial. d* is of the form f od
where f : [0,00) — [0,00) is concave such that f(0) = 0. Explicitly, f(x) = 2%,
which is concave since f”(z) = a(a — 1)z%~2 < 0. By concavity,

tf(x) + (1 —=1t)f(y) < flte+ (1 —t)y),

for x,y € [0,00), t € [0,1]. In particular, f(tx) > tf(z) setting y = 0 above.
Thus,

F@) = F@it) > S fla ),
- Tty Y
FW) = f )2 o fE+y)

From this we see that f is subadditive, f(z + y) < f(z) + f(y). Thus for
z,y,z2 € X, fd(z,2)) < f(d(z,y) +d(y,2)) < fld(z,y)) + f(d(y,2)). that
is, f od is a metric. Taking f(xz) = 2® shows that the snowflake version of
X, (X,d”) is a metric space. (b) follows from the proof of (a) observing that

f:[0,00) = [0,00) .
fo) = 1o

is a concave function, ¢”(z) = —2(1 +2)73 < 0, f(0) =0, and dy = go d. (c)
Since a concave function is continuous, id: (X,d) — (X, fod) and id: (X, f o
d) — (X,d) are continuous, and it follows that (X,d) is homeomorphic to
(X, f od). This shows that the topologies 74, T4o, and 74, are the same, and
that concave functions map metrics to metrics and the topologies induced by
the metrics are equivalent. O

Exercise 2 (Kuratowski embedding). Prove that every metric space X can be
isometrically embedded into the Banach space £>°(X).

Proof. Fix any z9 € X. For each y € X define a map s,: X — R by
sy(@) = ly — 2| — |z — wo.
By the reverse triangle inequality

[sy(@)| = [ly — 2| = & — ol < |y — o,



80 ||syllee < |ly—20| < 00, and s, € I°°(X). We claim that y — s, is an isometric
embedding X — [°°(X). First observe that

|sy(2) = s:(2)] = [|lz —y| — |z — z[| < |y — 2|,
80 |Isy — 8zllee < |y — z|. However, for z = vy, |sy(x) — s,(z)| = |y — 2|, so
sy — $zllooc = |y — z|. Thus, y — s, is an isometric embedding. O

A drawback with the Kuratowski embedding is that ¢>°(X) depends on X.
Thus, if X and Y are two distinct metric spaces, the Kuratowski embedding
embeds both metric spaces into two possibly distinct spaces. At least for sep-
arable metric spaces there exists a universal metric space, £>°(N), into which
all separable metric spaces can be isometrically embedded. This embedding,
known as the Fréchet embedding, can be used to define the Gromov-Hausdorff
distance between separable metric spaces, making it possible to speak of limits
of spaces.

Exercise 3 (Fréchet embedding). Prove that every separable metric space can
be isometrically embedded into the Banach space £>°(N).

Proof. By separability, fix {z;: i € N} dense in X. For each z; define the map
T (52,(%))i,

where s,,: X — R is given by s,,(z) = |z — z;| — |z; — xo|. As previously,
$z;(x) < |z — xo| for all i € N so (s, ()); € £°(N) for each z € X. Thus,
we have a map X — ¢°°(N) and it remains to show that it is an isometric
embedding. Towards this observe that

|52, (x) = 50, (W)| = [l — @il =y — 2| <o —yl.

However, since {xz;: i € N} is dense in X there exists a subsequence z; — z, so
l[(s2; (2))i = (82, (y))illoo = |2 — 9. O

Exercise 4 (Cantor’s Intersection Theorem). Prove that a metric space X is
complete if and only if it has the following property: if every sequence (X,,)
of non-empty, closed subsets of X such that X,+1 C X, for every n and
diam(X,,) — 0, then the sets X,, have a common point, i.e. N, X, # 0.

Proof. Suppose X is complete. For each n, pick x, € X,. Since the sequence
is nested it follows that for m > n, d(zp,z,) < diam(X,) — 0 as n — oc.
Thus, (x,) is a Cauchy sequence in X and by completeness converges to a point
xz € X. We claim that z € N,X,,. But for any m, {Zm,Zm41,...-} C Xm,
so ¢ € X, = X, since X, is closed. Thus we conclude that = € X, for
any m, in other words = € N, X,,. Since X is Hausdorff, this is the only point
in the intersection. On the other hand, suppose any nested sequence with the
listed properties has the non-empty intersection property. Let (x,) be any
Cauchy sequence and consider the tails T,, = {zn,Znt1,...}. Since (z,) is

Cauchy diam(7;,) — 0, and hence diam(7,,) — 0. Namely, since T, C T,
diam(7,) < diam(7,). On the other hand, for any points z,y € T,,, both
B(z,e) N T, and B(y,e) NT, are non-empty. Pick points ' and 3’ from the

intersections, respectively. Now,

d(z,y) < d(z,2") +d(a',y") +dy',y) < d@',y') + 2,



from which it follows that diam(7},,) < diam(7},). Thus, we have constructed
a nested sequence (T),) of closed non-empty sets whose diameter converges to
zero. By the non-empty intersection property N,7), contains a point z € X.
Moreover, d(x,,,r) < diam(T},) — 0, so &, — = in X proving completeness. [

Exercise 5. (a) Let f: X — 'Y be a bi-Lipschitz homeomorphism. Prove that
X is complete if and only if Y is complete.

(b) Give an example of homeomorphic metric spaces such that X is complete
and Y is not.

Proof. (a) Suppose X is complete and let (y;) be any Cauchy sequence in Y.
By surjectivity it is of the form (f(x;)). We claim that (f(x;)) converges to a
point in Y. Since f is bi-Lipschitz

Fwe) = Fe)| 2 Tl — 5,

it follows that (z;) is a Cauchy sequence in X and converges to by complete-
ness. Again by the bi-Lipschitz property |f(z;) — f(x)| < L|z; — | — 0,and
hence the sequence (y,) converges to y = f(x) € Y. Similarly for ¥ complete.

(b) Let f: R — (—1,1) be given by f(x) = H% where R has the standard
x

topology and (—1,1) the induced topology from R. Clearly f is a homeomor-

phism, R is complete but the sequence (1 — 1/n) does not converge to a point

n(—1,1). O

In particular, completeness is not a topological invariant. However, complete
metrizability is. If f: X — Y is a homeomorphism and X is a complete metric
space, there exists a metric on Y making it complete. In particular, there exists
a metric on (—1, 1) making it complete.

Exercise 6. Let X = (R?,d.,) where do, is the metric given by || - ||oo and let
Y = R? with the standard metric. Let

= {(713 1)7 (17 *1)7 (17 1)} cX
and f: A — R?,

f(_L 1) = (_170)7 f(17 _1) = (17O)a f(lv 1) = (07 \/g)
Show that f is 1-Lipshitz but has no 1-Lipschitz extension to AU{(0,0)}.

Solution. Denote the standard metric on R? by dg. By a straightforward
computation

dp(f(=1,1), f(1,-1)) = du((-1 )(1,0))2
dp(f(=1,1), f(1,1)) = d((~1,0),(0,V3))
dp(f(1,-1), f(1,1)) = de((1,0),(0,v3)) = 2
On the other hand recalling that de ((21,y1), (%2, y2) = max{|z1 —x2|, |y1 — 2|},
doe((~1,1), (1, 1)) = 2
doo((-1,1),(1,1)) =2
do((1,-1),(1,1)) = 2.



Thus, f is 1-Lipschitz. Denote f(0,0) = (s,t) and note that ds((0,0), (z,y)) =
1 for all (z,y) € A. Thus, for the extension of f we need dg(f(0,0), (z,y)) =
dr((s,t), (z,y)) < 1 for it to be 1-Lipschitz. If s > 0 this fails for the point
(x,y) = (—1,1), if s < 0 this fails for the point (z,y) = (1, —1), and if s =0 it
must hold that |t —y| = 0 for y = —1 or 1, which is impossible. O

Note that f has a v/2-Lipschitz extension to the whole of X, Corollary 1.26.
On the other hand this exercise shows that Kirszbraun’s theorem does not hold
since X does not have an Euclidean metric.



