MATHEMATICAL MODELING 2012

SOLUTIONS TO EXERCISES 7-9

Exercise 10

Consider the linear system

d

d;z = Az, AcR2? (1)
1. Solution:

Let A1 and Ao be the eigenvalues with corresponding eigenvectors b; and by. Then by
definition of the eigenvalues and eigenvectors

A(by) = Mby = D1 ©)
A(by) = Aoby = L2

From which we deduce that x1(t) = e**b; and resp. z2(t) = e*?'by are solutions of the
first and resp. the second equation of (2). Moreover, any linear combination of these
solutions is a solution to (1). So z(t) = Bre by + B2e*?by is a solution of (1).

Indeed, if we want to verify

dz
dat A1 B1eM by + Ao Bae2hy (3)

and

Az = B1eMtAby + Bae?t Aby

= B1eMiNby + Bae Aoby
B dz

= 4
= (4)
2. The eigenspaces [b1] and [bs] are invariant

Let z1 € [b1] so 1 = kb1, k € R then Az = Akb; = \kby € [b1]. So the eigenspaces are
invariant.

Phase plane portrait:

See the lecture notes.

3. If the eigenvalues are complex then they are complex conjugates and so are the eigenvectors.

A € R?*2 50 the trace is a real number tr(A) € R implying that
A+ A2 € Re Im(A) +Im(A2) =0 (5)
Next, we look at the determinant of A
det(A) = A €R (6)

Denote A\ = x1 +iy; and A\ = w9 + iy = w9 — iy by condition (5). Condition (6) gives
(x1+iy1)(z2—iy1) € R and thus z1y; —2y1 = 0 which implies that z1 = x». All together,
conditions (5) and (6) give that A\; = Aa.



Better way to prove:

The characteristic polynom of A is A2 +bA+c = 0 with complex solutions (by assumption)

AL = % and Ay = %. They are therefore complex conjugates.

A simpler way to prove this is written in the appendix A. Use the fact that A; is an
eigenvalue with eigenvector b;.

Abl = )\161 = Ab_l = )\_11)_1
Thus the other eigenvalue is A; with eigenvector b;.

. 1 and By are complex conjugates and

2(t) = RN (g cos (Im(A)t) + arg sin (Im(A)2))

We have that z(t) € R so z(t) — 2(t) = 0 € R. Using equation (4), the facts that by = b
and A2 = Aq, we find that

(81— Ba) brett 4 (B2 — B1) bieMt =0 for any t. (7)

where 1, B2, by are fixed.

Take t such that byeMt =1 = b_le):lt = bieMt. Then equation (7) becomes

0= (81— B2) + (B2— )
=p1— B+ B2— B
= Im(51) + Im(B2)
So we derive Im(81) = —Im(52).

Next, take ¢ such that bje** = 4. Then equation (7) becomes

0= (B1—Ba2)i—i(B2— 1)
= b1+ b1~ fa— P2
= 2Re(f1) — 2Re(f2)
So we derive Re(31) = Re(B2) and hence 33 = 1.
Let 81 = ¢+ id and by = e+ if then
2(t) = BreMby + 5716%71
= Biby eRe(V)t im(N)t + 51 by eRe(,'\)t eilm(,'\)t
= RV (((ce — df) + i(ed + cf)) (cos (Im(A)t) + i sin (Im(A)t)))
+ RN (((ce — df) — ied + cf)) (cos (Im(A)t) — i sin (Im(A)t)))
= RNV (2(ce — df) cos (Im(A)t) — 2(ed + cf ) sin (Im(\)2))
= RV (o cos (Im(A)t) + o sin (Im(\)t))

Phase portraits
For Re(A) < 0 and Im(\) # 0 then we have an stable focus.
For Re(\) > 0 and Im(\) # 0 then we have an unstable focus.




Exercise 8
Consider the epidemic model

ds
dt
di
dt
dr
dt

= —f(si
+8si — i

i-processes

Lost of immunity:

Recovery:

Infection:

+ dr (susceptible but healthy)
(infected)

+vi — or (recovered and temporarily immune)

RS (1)
IR (2)
I+8 201 (3)

Conservation relation:
Let n =i+ r + s be a constant. Then write r =n — i — s. The system (8) becomes

{

ds
dt

—Bsi +6(n—1i—s)

% = +f0si — i
Phase-analysis:
1. isoclines (5 = 0, % = 0)
$§=0
& —fsi+o(n—i—s)=0
s = (10)
di

%:0@1':001«9:%

2. Drawing the isoclines

e The conditions are ¢ > 0, s > 0 and s +1¢ < n.
e Notice from equation (10) that s =0 < n = 1.

e There are two different cases either % < n or % > n. Therefore, we will draw two
graphs.

e Look at the sign of the derivative from (9) at points (0,0), (e, €),
direction of the arrows.
%(0,0) =dn >0, % = Be% — ve < 0 for example.

... to determine the

(*) The case § <n

We see that the point (n,0) is a stable equilibrium, see figure 2. It is an intersection of the
isoclines s = 0 and % = 0 and the arrows point toward this point.

(**) The case n > %

B
Remark 0.1. There are 2 equilibria:

)
Bly+0

v

(n,0) and (3,1) 3

(12)

(7 (5))



isocline of $ =0

~

6(n—1)

8= 518

/ isocline of i = 0

Figure 1: Isoclines in the case n <

™R

isocline of y =0

isocline of £ =0

Figure 2: Isoclines in the case n > %

We see that an arrow is going away from the equilibrium (n, 0) so it’s an unstable equilibrium.

For (5,1), we see that the arrows indicate a rotative movement around the equilibrium.
Therefore, we need to look at the local stabililty.

We compute the Jacobi-matrix of the system

fi(s,i) =—Bsi +d6(n—i—ys)
fa(s,i) = +Bsi —~i

which is

ofi 9fi = = = =
(B P\ (P9 —ﬂs—5> _ <—ﬂz—(5 —ﬁs—5>
A <6Zf 88f> ( G Bi—n 57 0

eigenvalues, we simply look at the trace and the

where the last equality stands because §
To know the sign of the real part of th
determinant.

o w2



det(A) = Bi (Bs +6) >0

so we know that the eigenvalues have the same sign.
Now, we turn to the trace

tr(A)=—-Bi—6 <0

Therefore, the eigenvalues are both negative and the equilibrium is stable. It’s a stable focus.

Exercise 9

i-processes

Lost of immunity: R-2 S (1)
Recovery: IR (2)
Infection: 1+8 -2 a1 (3)

Death: Rt (4)

Death: S st (5)

Death: 15 (6)

Birth: S %528 (7)

Birth: R S+R (8)

Differential equations:

% = —Bsi+0r+as+ar—pus
& — 4 Bsi — i — pi (13)
% = +7i — 6r — pr

1. Let p be the death rate and « be the birth rate. Show that if u, o < 5, 7, d then the

total population density n = s + i 4 r is a slow variable.

We introduce the dimensionless scaling parameter € and let 4 = ep* and o = ea™ so that
the parameters o*, p*, 3, v, § are the same order. The system (13) becomes

ds — —Bsi + 0r + ea*s + e — eu’s
& = +Bsi— i — ep*i (14)
% = +vi — §r — epr
Since%z%—k%—i—%,weget
d
d—’z = —eu*n+eat(s+7) (15)

and lim._, oo ‘fl—? = 0. This shows that n is a slow variable.
In the fast time, the system evolves as in the previous exercise 8.

To study the behaviour of n, we must introduce the slow time t* = et. The system (14)
becomes

ejTi = —fBsi 4+ 0r + ea*s + ea*r — eu*s

ed‘ff* = +0si — i — eu*i (16)
ec% = +vi — or — eu’r

€M — —epn+eat(s+1) = —ep'n+ ea*(n — i)




(a) in the case n < 3
Then the equilibrium from exercise 8 is (5,7) = (n,0) and moreover 7 = 0.
The last equation of (17) gives
dn

= (0"~

e if the rate of birth « is smaller than the rate of death u, then lim; o n(t) = 0.

e if the rate of birth « is larger than the rate of death j, then n(t) = n(0)e(® ~#")*
is an increasing function and there exists a time ty such that n(tg) = % For
t > to, we are in the case n > %

(b) in the case n > 7

Taking the limit as e — 0, we recover the equilibrium equations for s and 7 that we
computed in exercise 8. Take i = 7 given in (12) in the last equation of (17), the
system is now

0=—0si+or
0=+pFsi — i
. (17)
0= +vyi—or
an — —pn+ o (1— %) n+ao}
We focus on the last equation.
(*) Casea*(l—%)—,u* < Othenfl—? > 0 for n < n and %” < 0 for n > n.
n
A
— n
0 7
equilibrium
Figure 3: Graphical way to find the equilibrium 7 in the case o > p.
Therefore the point
1
n= a*% > (18)
()
1
= (19)

is the equilibrium.

(**) In the case o* (1 — %) — p* > 0 then the death rate can not counterbalance

the birth rate and limy_, o, n(t) = oc.



