MATHEMATICAL MODELING 2012

SOLUTIONS TO EXERCISES 7-9

Exercise 10

Consider the linear system

$$
\begin{equation*}
\frac{d z}{d t}=A z, \quad A \in \mathbb{R}^{2 \times 2} \tag{1}
\end{equation*}
$$

1. Solution:

Let λ_{1} and λ_{2} be the eigenvalues with corresponding eigenvectors b_{1} and b_{2}. Then by definition of the eigenvalues and eigenvectors

$$
\left\{\begin{array}{l}
A\left(b_{1}\right)=\lambda_{1} b_{1}=\frac{d b_{1}}{d t} \tag{2}\\
A\left(b_{2}\right)=\lambda_{2} b_{2}=\frac{d b_{2}}{d t}
\end{array}\right.
$$

From which we deduce that $x_{1}(t)=e^{\lambda_{1} t} b_{1}$ and resp. $x_{2}(t)=e^{\lambda_{2} t} b_{2}$ are solutions of the first and resp. the second equation of (2). Moreover, any linear combination of these solutions is a solution to (1). So $z(t)=\beta_{1} e^{\lambda_{1} t} b_{1}+\beta_{2} e^{\lambda_{2} t} b_{2}$ is a solution of (1).
Indeed, if we want to verify

$$
\begin{equation*}
\frac{d z}{d t}=\lambda_{1} \beta_{1} e^{\lambda_{1} t} b_{1}+\lambda_{2} \beta_{2} e^{\lambda_{2} t} b_{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{align*}
A z & =\beta_{1} e^{\lambda_{1} t} A b_{1}+\beta_{2} e^{\lambda_{2} t} A b_{2} \\
& =\beta_{1} e^{\lambda_{1} t} \lambda_{1} b_{1}+\beta_{2} e^{\lambda_{2} t} \lambda_{2} b_{2} \\
& =\frac{d z}{d t} \tag{4}
\end{align*}
$$

2. The eigenspaces $\left[b_{1}\right]$ and $\left[b_{2}\right]$ are invariant

Let $x_{1} \in\left[b_{1}\right]$ so $x_{1}=k b_{1}, k \in \mathbb{R}$ then $A x_{1}=A k b_{1}=\lambda_{1} k b_{1} \in\left[b_{1}\right]$. So the eigenspaces are invariant.
Phase plane portrait:
See the lecture notes.
3. If the eigenvalues are complex then they are complex conjugates and so are the eigenvectors. $A \in \mathbb{R}^{2 \times 2}$ so the trace is a real number $\operatorname{tr}(A) \in \mathbb{R}$ implying that

$$
\begin{equation*}
\lambda_{1}+\lambda_{2} \in \mathbb{R} \Leftrightarrow \operatorname{Im}\left(\lambda_{1}\right)+\operatorname{Im}\left(\lambda_{2}\right)=0 \tag{5}
\end{equation*}
$$

Next, we look at the determinant of A

$$
\begin{equation*}
\operatorname{det}(A)=\lambda_{1} \lambda_{2} \in \mathbb{R} \tag{6}
\end{equation*}
$$

Denote $\lambda_{1}=x_{1}+i y_{1}$ and $\lambda_{2}=x_{2}+i y_{2}=x_{2}-i y_{1}$ by condition (5). Condition (6) gives $\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{1}\right) \in \mathbb{R}$ and thus $x_{1} y_{1}-x_{2} y_{1}=0$ which implies that $x_{1}=x_{2}$. All together, conditions (5) and (6) give that $\lambda_{1}=\overline{\lambda_{2}}$.

Better way to prove:
The characteristic polynom of A is $\lambda^{2}+b \lambda+c=0$ with complex solutions (by assumption) $\lambda_{1}=\frac{-b-i \sqrt{\Delta}}{2}$ and $\lambda_{2}=\frac{-b+i \sqrt{\Delta}}{2}$. They are therefore complex conjugates.
A simpler way to prove this is written in the appendix A. Use the fact that λ_{1} is an eigenvalue with eigenvector b_{1}.

$$
A b_{1}=\lambda_{1} b_{1} \Rightarrow A \overline{b_{1}}=\overline{\lambda_{1}} \overline{b_{1}}
$$

Thus the other eigenvalue is $\overline{\lambda_{1}}$ with eigenvector $\overline{b_{1}}$.
4. β_{1} and β_{2} are complex conjugates and

$$
z(t)=e^{\operatorname{Re}(\lambda) t}\left(\alpha_{1} \cos (\operatorname{Im}(\lambda) t)+\alpha_{2} \sin (\operatorname{Im}(\lambda) t)\right)
$$

We have that $z(t) \in \mathbb{R}$ so $z(t)-\bar{z}(t)=0 \in \mathbb{R}$. Using equation (4), the facts that $b_{2}=\overline{b_{1}}$ and $\lambda_{2}=\overline{\lambda_{1}}$, we find that

$$
\begin{equation*}
\left(\beta_{1}-\overline{\beta_{2}}\right) b_{1} e^{\lambda_{1} t}+\left(\beta_{2}-\overline{\beta_{1}}\right) \overline{b_{1}} e^{\overline{\lambda_{1} t}}=0 \quad \text { for any } t . \tag{7}
\end{equation*}
$$

where $\beta_{1}, \beta_{2}, b_{1}$ are fixed.
Take t such that $b_{1} e^{\lambda_{1} t}=1=\overline{b_{1}} e^{\overline{\lambda_{1}} t}=b_{1} \bar{e}^{\lambda_{1} t}$. Then equation (7) becomes

$$
\begin{aligned}
0 & =\left(\beta_{1}-\bar{\beta}_{2}\right)+\left(\beta_{2}-\bar{\beta}_{1}\right) \\
& =\beta_{1}-\bar{\beta}_{1}+\beta_{2}-\bar{\beta}_{2} \\
& =\operatorname{Im}\left(\beta_{1}\right)+\operatorname{Im}\left(\beta_{2}\right)
\end{aligned}
$$

So we derive $\operatorname{Im}\left(\beta_{1}\right)=-\operatorname{Im}\left(\beta_{2}\right)$.
Next, take t such that $b_{1} e^{\lambda_{1} t}=i$. Then equation (7) becomes

$$
\begin{aligned}
0 & =\left(\beta_{1}-\bar{\beta}_{2}\right) i-i\left(\beta_{2}-\bar{\beta}_{1}\right) \\
& =\beta_{1}+\bar{\beta}_{1}-\beta_{2}-\bar{\beta}_{2} \\
& =2 \operatorname{Re}\left(\beta_{1}\right)-2 \operatorname{Re}\left(\beta_{2}\right)
\end{aligned}
$$

So we derive $\operatorname{Re}\left(\beta_{1}\right)=\operatorname{Re}\left(\beta_{2}\right)$ and hence $\beta_{2}=\bar{\beta}_{1}$.
Let $\beta_{1}=c+i d$ and $b_{1}=e+i f$ then

$$
\begin{aligned}
z(t)= & \beta_{1} e^{\lambda t} b_{1}+\bar{\beta}_{1} e^{\bar{\lambda} t} \overline{b_{1}} \\
= & \beta_{1} b_{1} e^{\operatorname{Re}(\lambda) t} e^{i \operatorname{Im}(\lambda) t}+\bar{\beta}_{1} \overline{b_{1}} e^{\operatorname{Re}(\bar{\lambda}) t} e^{i \operatorname{Im}(\bar{\lambda}) t} \\
= & e^{\operatorname{Re}(\lambda) t}(((c e-d f)+i(e d+c f))(\cos (\operatorname{Im}(\lambda) t)+i \sin (\operatorname{Im}(\lambda) t))) \\
& +e^{\operatorname{Re}(\lambda) t}(((c e-d f)-i(e d+c f))(\cos (\operatorname{Im}(\lambda) t)-i \sin (\operatorname{Im}(\lambda) t))) \\
= & e^{\operatorname{Re}(\lambda) t}(2(c e-d f) \cos (\operatorname{Im}(\lambda) t)-2(e d+c f) \sin (\operatorname{Im}(\lambda) t)) \\
= & e^{\operatorname{Re}(\lambda) t}\left(\alpha_{1} \cos (\operatorname{Im}(\lambda) t)+\alpha_{2} \sin (\operatorname{Im}(\lambda) t)\right)
\end{aligned}
$$

Phase portraits

For $\operatorname{Re}(\lambda)<0$ and $\operatorname{Im}(\lambda) \neq 0$ then we have an stable focus.
For $\operatorname{Re}(\lambda)>0$ and $\operatorname{Im}(\lambda) \neq 0$ then we have an unstable focus.

Exercise 8

Consider the epidemic model

$$
\left\{\begin{array}{l}
\frac{d s}{d t}=-\beta s i \quad+\delta r \text { (susceptible but healthy) } \tag{8}\\
\frac{d i}{d t}=+\beta s i-\gamma i \quad \text { (infected) } \\
\frac{d r}{d t}=\quad+\gamma i-\delta r \text { (recovered and temporarily immune) }
\end{array}\right.
$$

i-processes

$$
\begin{array}{rr}
\text { Lost of immunity: } & R \xrightarrow{\delta} S \\
\text { Recovery: } & I \xrightarrow{\gamma} R \\
\text { Infection: } & I+S \xrightarrow{\beta} 2 I \tag{3}
\end{array}
$$

Conservation relation:
Let $n=i+r+s$ be a constant. Then write $r=n-i-s$. The system (8) becomes

$$
\left\{\begin{array}{l}
\frac{d s}{d t}=-\beta s i+\delta(n-i-s) \tag{9}\\
\frac{d i}{d t}=+\beta s i-\gamma i
\end{array}\right.
$$

Phase-analysis:

1. isoclines $\left(\dot{s}=0, \frac{d i}{d t}=0\right)$

$$
\begin{align*}
& \dot{s}=0 \\
& \Leftrightarrow-\beta s i+\delta(n-i-s)=0 \\
& \Leftrightarrow s=\frac{\delta(n-i)}{\delta+\beta i} \tag{10}\\
& \frac{d i}{d t}=0 \Leftrightarrow i=0 \text { or } s=\frac{\gamma}{\beta} \tag{11}
\end{align*}
$$

2. Drawing the isoclines

- The conditions are $i \geq 0, s \geq 0$ and $s+i \leq n$.
- Notice from equation (10) that $s=0 \Leftrightarrow n=i$.
- There are two different cases either $\frac{\gamma}{\beta}<n$ or $\frac{\gamma}{\beta} \geq n$. Therefore, we will draw two graphs.
- Look at the sign of the derivative from (9) at points $(0,0),(\epsilon, \epsilon), \ldots$ to determine the direction of the arrows.

$$
\frac{d s}{d t}(0,0)=\delta n>0, \frac{d i}{d t}=\beta \epsilon^{2}-\gamma \epsilon<0 \text { for example. }
$$

(*) The case $\frac{\gamma}{\beta} \leq n$
We see that the point $(n, 0)$ is a stable equilibrium, see figure 2 . It is an intersection of the isoclines $\dot{s}=0$ and $\frac{d i}{d t}=0$ and the arrows point toward this point.
(**) The case $n>\frac{\gamma}{\beta}$
Remark 0.1. There are 2 equilibria:

$$
\begin{equation*}
(n, 0) \text { and }(\bar{s}, \bar{i})=\left(\frac{\gamma}{\beta}, \frac{\delta}{\gamma+\delta}\left(n-\frac{\gamma}{\beta}\right)\right) \tag{12}
\end{equation*}
$$

Figure 1: Isoclines in the case $n \leq \frac{\gamma}{\beta}$.

Figure 2: Isoclines in the case $n>\frac{\gamma}{\beta}$.

We see that an arrow is going away from the equilibrium $(n, 0)$ so it's an unstable equilibrium.
For (\bar{s}, \bar{i}), we see that the arrows indicate a rotative movement around the equilibrium. Therefore, we need to look at the local stabililty.

We compute the Jacobi-matrix of the system

$$
\left\{\begin{array}{l}
f_{1}(s, i)=-\beta s i+\delta(n-i-s) \\
f_{2}(s, i)=+\beta s i-\gamma i
\end{array}\right.
$$

which is

$$
A=\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial s} & \frac{\partial f_{1}}{\partial i} \\
\frac{\partial f_{2}}{\partial s} & \frac{\partial j_{2}}{\partial i}
\end{array}\right)=\left(\begin{array}{cc}
-\beta \bar{i}-\delta & -\beta \bar{s}-\delta \\
\beta \bar{i} & \beta \bar{s}-\gamma
\end{array}\right)=\left(\begin{array}{cc}
-\beta \bar{i}-\delta & -\beta \bar{s}-\delta \\
\beta \bar{i} & 0
\end{array}\right)
$$

where the last equality stands because $\bar{s}=\frac{\gamma}{\beta}$.
To know the sign of the real part of the eigenvalues, we simply look at the trace and the determinant.

$$
\operatorname{det}(A)=\beta \bar{i}(\beta s+\delta)>0
$$

so we know that the eigenvalues have the same sign.
Now, we turn to the trace

$$
\operatorname{tr}(A)=-\beta \bar{i}-\delta<0
$$

Therefore, the eigenvalues are both negative and the equilibrium is stable. It's a stable focus.

Exercise 9

i-processes

$$
\begin{equation*}
 \tag{1}
\end{equation*}
$$

Differential equations:

$$
\left\{\begin{array}{l}
\frac{d s}{d t}=-\beta s i+\delta r+\alpha s+\alpha r-\mu s \tag{13}\\
\frac{d i}{d t}=+\beta s i-\gamma i-\mu i \\
\frac{d r}{d t}=\quad+\gamma i-\delta r-\mu r
\end{array}\right.
$$

1. Let μ be the death rate and α be the birth rate. Show that if $\mu, \alpha \ll \beta, \gamma, \delta$ then the total population density $n=s+i+r$ is a slow variable.
We introduce the dimensionless scaling parameter ϵ and let $\mu=\epsilon \mu^{*}$ and $\alpha=\epsilon \alpha^{*}$ so that the parameters $\alpha^{*}, \mu^{*}, \beta, \gamma, \delta$ are the same order. The system (13) becomes

$$
\left\{\begin{array}{l}
\frac{d s}{d t}=-\beta s i+\delta r+\epsilon \alpha^{*} s+\epsilon \alpha^{*} r-\epsilon \mu^{*} s \tag{14}\\
\frac{d i}{d t}=+\beta s i-\gamma i-\epsilon \mu^{*} i \\
\frac{d r}{d t}=+\gamma i-\delta r-\epsilon \mu^{*} r
\end{array}\right.
$$

Since $\frac{d n}{d t}=\frac{d s}{d t}+\frac{d i}{d t}+\frac{d r}{d t}$, we get

$$
\begin{equation*}
\frac{d n}{d t}=-\epsilon \mu^{*} n+\epsilon \alpha^{*}(s+r) \tag{15}
\end{equation*}
$$

and $\lim _{\epsilon \rightarrow \infty} \frac{d n}{d t}=0$. This shows that n is a slow variable.
In the fast time, the system evolves as in the previous exercise 8 .
To study the behaviour of n, we must introduce the slow time $t^{*}=\epsilon t$. The system (14) becomes

$$
\left\{\begin{array}{l}
\epsilon \frac{d s}{d t^{*}}=-\beta s i+\delta r+\epsilon \alpha^{*} s+\epsilon \alpha^{*} r-\epsilon \mu^{*} s \tag{16}\\
\epsilon \frac{d i}{d t^{*}}=+\beta s i-\gamma i-\epsilon \mu^{*} i \\
\epsilon \frac{d r}{d t^{*}}=+\gamma i-\delta r-\epsilon \mu^{*} r \\
\epsilon \frac{d n}{d t^{*}}=-\epsilon \mu^{*} n+\epsilon \alpha^{*}(s+r)=-\epsilon \mu^{*} n+\epsilon \alpha^{*}(n-i)
\end{array}\right.
$$

(a) in the case $n<\frac{\gamma}{\beta}$

Then the equilibrium from exercise 8 is $(\bar{s}, \bar{i})=(n, 0)$ and moreover $\bar{r}=0$.
The last equation of (17) gives

$$
\frac{d n}{d t}=\left(\alpha^{*}-\mu^{*}\right) n
$$

- if the rate of birth α is smaller than the rate of death μ, then $\lim _{t \rightarrow \infty} n(t)=0$.
- if the rate of birth α is larger than the rate of death μ, then $n(t)=n(0) e^{\left(\alpha^{*}-\mu^{*}\right) t}$ is an increasing function and there exists a time t_{0} such that $n\left(t_{0}\right)=\frac{\gamma}{\beta}$. For $t>t_{0}$, we are in the case $n>\frac{\gamma}{\beta}$.
(b) in the case $n>\frac{\gamma}{\beta}$

Taking the limit as $\epsilon \rightarrow 0$, we recover the equilibrium equations for s and i that we computed in exercise 8. Take $i=\bar{i}$ given in (12) in the last equation of (17), the system is now

$$
\left\{\begin{array}{l}
0=-\beta s i+\delta r \tag{17}\\
0=+\beta s i-\gamma i \\
0=+\gamma i-\delta r \\
\frac{d n}{d t^{*}}=-\mu^{*} n+\alpha^{*}\left(1-\frac{\delta}{\gamma+\delta}\right) n+\alpha^{*} \frac{\gamma}{\beta}
\end{array}\right.
$$

We focus on the last equation.
${ }^{(*)}$ Case $\alpha^{*}\left(1-\frac{\delta}{\gamma+\delta}\right)-\mu^{*}<0$ then $\frac{d n}{d t}>0$ for $n<\bar{n}$ and $\frac{d n}{d t}<0$ for $n>\bar{n}$.

Figure 3: Graphical way to find the equilibrium \bar{n} in the case $\alpha>\mu$.
Therefore the point

$$
\begin{align*}
\bar{n} & =\alpha^{*} \frac{\gamma}{\beta} \frac{1}{\mu^{*}-\alpha^{*}\left(1-\frac{\delta}{\gamma+\delta}\right)} \tag{18}\\
& =\alpha \frac{\gamma}{\beta} \frac{1}{\mu-\alpha\left(1-\frac{\delta}{\gamma+\delta}\right)} \tag{19}
\end{align*}
$$

is the equilibrium.
${ }^{(* *)}$ In the case $\alpha^{*}\left(1-\frac{\delta}{\gamma+\delta}\right)-\mu^{*}>0$ then the death rate can not counterbalance the birth rate and $\lim _{t \rightarrow \infty} n(t)=\infty$.

