
MATHEMATICAL MODELING 2012

SOLUTIONS TO EXERCISES 7-9

Exercise 10

Consider the linear system
dz

dt
= Az, A ∈ R2×2 (1)

1. Solution:

Let λ1 and λ2 be the eigenvalues with corresponding eigenvectors b1 and b2. Then by
definition of the eigenvalues and eigenvectors{

A(b1) = λ1b1 = db1
dt

A(b2) = λ2b2 = db2
dt

(2)

From which we deduce that x1(t) = eλ1tb1 and resp. x2(t) = eλ2tb2 are solutions of the
first and resp. the second equation of (2). Moreover, any linear combination of these
solutions is a solution to (1). So z(t) = β1e

λ1tb1 + β2e
λ2tb2 is a solution of (1).

Indeed, if we want to verify

dz

dt
= λ1β1e

λ1tb1 + λ2β2e
λ2tb2 (3)

and

Az = β1e
λ1tAb1 + β2e

λ2tAb2

= β1e
λ1tλ1b1 + β2e

λ2tλ2b2

=
dz

dt
(4)

2. The eigenspaces [b1] and [b2] are invariant

Let x1 ∈ [b1] so x1 = kb1, k ∈ R then Ax1 = Akb1 = λ1kb1 ∈ [b1]. So the eigenspaces are
invariant.

Phase plane portrait:

See the lecture notes.

3. If the eigenvalues are complex then they are complex conjugates and so are the eigenvectors.

A ∈ R2×2 so the trace is a real number tr(A) ∈ R implying that

λ1 + λ2 ∈ R⇔ Im(λ1) + Im(λ2) = 0 (5)

Next, we look at the determinant of A

det(A) = λ1λ2 ∈ R (6)

Denote λ1 = x1 + iy1 and λ2 = x2 + iy2 = x2 − iy1 by condition (5). Condition (6) gives
(x1 +iy1)(x2−iy1) ∈ R and thus x1y1−x2y1 = 0 which implies that x1 = x2. All together,
conditions (5) and (6) give that λ1 = λ̄2.
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Better way to prove:

The characteristic polynom of A is λ2 +bλ+c = 0 with complex solutions (by assumption)

λ1 = −b−i
√

∆
2 and λ2 = −b+i

√
∆

2 . They are therefore complex conjugates.

A simpler way to prove this is written in the appendix A. Use the fact that λ1 is an
eigenvalue with eigenvector b1.

Ab1 = λ1b1 ⇒ Ab̄1 = λ̄1b̄1

Thus the other eigenvalue is λ̄1 with eigenvector b̄1.

4. β1 and β2 are complex conjugates and

z(t) = eRe(λ)t (α1 cos (Im(λ)t) + α2 sin (Im(λ)t))

We have that z(t) ∈ R so z(t)− z̄(t) = 0 ∈ R. Using equation (4), the facts that b2 = b̄1
and λ2 = λ̄1, we find that(

β1 − β̄2

)
b1e

λ1t +
(
β2 − β̄1

)
b̄1e

λ̄1t = 0 for any t. (7)

where β1, β2, b1 are fixed.

Take t such that b1e
λ1t = 1 = b̄1e

λ̄1t = ¯b1eλ1t. Then equation (7) becomes

0 =
(
β1 − β̄2

)
+
(
β2 − β̄1

)
= β1 − β̄1 + β2 − β̄2

= Im(β1) + Im(β2)

So we derive Im(β1) = −Im(β2).

Next, take t such that b1e
λ1t = i. Then equation (7) becomes

0 =
(
β1 − β̄2

)
i− i

(
β2 − β̄1

)
= β1 + β̄1 − β2 − β̄2

= 2Re(β1)− 2Re(β2)

So we derive Re(β1) = Re(β2) and hence β2 = β̄1.

Let β1 = c+ id and b1 = e+ if then

z(t) = β1e
λtb1 + β̄1e

λ̄tb̄1

= β1b1e
Re(λ)teiIm(λ)t + β̄1b̄1e

Re(λ̄)teiIm(λ̄)t

= eRe(λ)t (((ce− df) + i(ed+ cf)) (cos (Im(λ)t) + i sin (Im(λ)t)))

+ eRe(λ)t (((ce− df)− i(ed+ cf)) (cos (Im(λ)t)− i sin (Im(λ)t)))

= eRe(λ)t (2(ce− df) cos (Im(λ)t)− 2(ed+ cf) sin (Im(λ)t))

= eRe(λ)t (α1 cos (Im(λ)t) + α2 sin (Im(λ)t))

Phase portraits

For Re(λ) < 0 and Im(λ) 6= 0 then we have an stable focus.

For Re(λ) > 0 and Im(λ) 6= 0 then we have an unstable focus.
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Exercise 8

Consider the epidemic model
ds
dt = −βsi + δr (susceptible but healthy)
di
dt = +βsi − γi (infected)
dr
dt = +γi − δr (recovered and temporarily immune)

(8)

i-processes

Lost of immunity: R
δ−→ S (1)

Recovery: I
γ−→ R (2)

Infection: I + S
β−→ 2I (3)

Conservation relation:
Let n = i+ r + s be a constant. Then write r = n− i− s. The system (8) becomes{

ds
dt = −βsi + δ(n− i− s)
di
dt = +βsi − γi

(9)

Phase-analysis:

1. isoclines (ṡ = 0, didt = 0)

ṡ = 0

⇔− βsi+ δ(n− i− s) = 0

⇔s =
δ(n− i)
δ + βi

(10)

di

dt
= 0⇔ i = 0 or s =

γ

β
(11)

2. Drawing the isoclines

• The conditions are i ≥ 0, s ≥ 0 and s+ i ≤ n.

• Notice from equation (10) that s = 0⇔ n = i.

• There are two different cases either γ
β < n or γ

β ≥ n. Therefore, we will draw two
graphs.

• Look at the sign of the derivative from (9) at points (0, 0), (ε, ε), ... to determine the
direction of the arrows.
ds
dt (0, 0) = δn > 0, di

dt = βε2 − γε < 0 for example.

(*) The case γ
β ≤ n

We see that the point (n, 0) is a stable equilibrium, see figure 2. It is an intersection of the
isoclines ṡ = 0 and di

dt = 0 and the arrows point toward this point.
(**) The case n > γ

β

Remark 0.1. There are 2 equilibria:

(n, 0) and (s̄, ī) =

(
γ

β
,

δ

γ + δ

(
n− γ

β

))
(12)
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0 n γ
β

isocline of ṡ = 0

s = δ(n−i)
δ+βi

isocline of i̇ = 0

Figure 1: Isoclines in the case n ≤ γ
β .

s

i

0 nγ
β

(s̄,̄i)

isocline of ẋ = 0

isocline of ẏ = 0

Figure 2: Isoclines in the case n > γ
β .

We see that an arrow is going away from the equilibrium (n, 0) so it’s an unstable equilibrium.

For (s̄, ī), we see that the arrows indicate a rotative movement around the equilibrium.
Therefore, we need to look at the local stabililty.

We compute the Jacobi-matrix of the system{
f1(s, i) = −βsi + δ(n− i− s)
f2(s, i) = +βsi − γi

which is

A =

(∂f1
∂s

∂f1
∂i

∂f2
∂s

∂f2
∂i

)
=

(
−βī− δ −βs̄− δ
βī βs̄− γ

)
=

(
−βī− δ −βs̄− δ
βī 0

)
where the last equality stands because s̄ = γ

β .

To know the sign of the real part of the eigenvalues, we simply look at the trace and the
determinant.
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det(A) = βī (βs+ δ) > 0

so we know that the eigenvalues have the same sign.
Now, we turn to the trace

tr(A) = −βī− δ < 0

Therefore, the eigenvalues are both negative and the equilibrium is stable. It’s a stable focus.

Exercise 9

i-processes

Lost of immunity: R
δ−→ S (1)

Recovery: I
γ−→ R (2)

Infection: I + S
β−→ 2I (3)

Death: R
µ−→ † (4)

Death: S
µ−→ † (5)

Death: I
µ−→ † (6)

Birth: S
α−→ 2S (7)

Birth: R
α−→ S +R (8)

Differential equations: 
ds
dt = −βsi+ δr + αs+ αr − µs
di
dt = +βsi− γi− µi
dr
dt = +γi− δr − µr

(13)

1. Let µ be the death rate and α be the birth rate. Show that if µ, α � β, γ, δ then the
total population density n = s+ i+ r is a slow variable.

We introduce the dimensionless scaling parameter ε and let µ = εµ∗ and α = εα∗ so that
the parameters α∗, µ∗, β, γ, δ are the same order. The system (13) becomes

ds
dt = −βsi+ δr + εα∗s+ εα∗r − εµ∗s
di
dt = +βsi− γi− εµ∗i
dr
dt = +γi− δr − εµ∗r

(14)

Since dn
dt = ds

dt + di
dt + dr

dt , we get

dn

dt
= −εµ∗n+ εα∗(s+ r) (15)

and limε→∞
dn
dt = 0. This shows that n is a slow variable.

In the fast time, the system evolves as in the previous exercise 8.

To study the behaviour of n, we must introduce the slow time t∗ = εt. The system (14)
becomes 

ε dsdt∗ = −βsi+ δr + εα∗s+ εα∗r − εµ∗s
ε didt∗ = +βsi− γi− εµ∗i
ε drdt∗ = +γi− δr − εµ∗r
ε dndt∗ = −εµ∗n+ εα∗(s+ r) = −εµ∗n+ εα∗(n− i)

(16)
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(a) in the case n < γ
β

Then the equilibrium from exercise 8 is (s̄, ī) = (n, 0) and moreover r̄ = 0.

The last equation of (17) gives

dn

dt
= (α∗ − µ∗)n

• if the rate of birth α is smaller than the rate of death µ, then limt→∞ n(t) = 0.

• if the rate of birth α is larger than the rate of death µ, then n(t) = n(0)e(α∗−µ∗)t

is an increasing function and there exists a time t0 such that n(t0) = γ
β . For

t > t0, we are in the case n > γ
β .

(b) in the case n > γ
β

Taking the limit as ε → 0, we recover the equilibrium equations for s and i that we
computed in exercise 8. Take i = ī given in (12) in the last equation of (17), the
system is now 

0 = −βsi+ δr

0 = +βsi− γi
0 = +γi− δr
dn
dt∗ = −µ∗n+ α∗

(
1− δ

γ+δ

)
n+ α∗ γβ

(17)

We focus on the last equation.

(*) Case α∗
(

1− δ
γ+δ

)
− µ∗ < 0 then dn

dt > 0 for n < n̄ and dn
dt < 0 for n > n̄.

n

ṅ

0 γ
β

equilibrium

Figure 3: Graphical way to find the equilibrium n̄ in the case α > µ.

Therefore the point

n̄ = α∗
γ

β

1

µ∗ − α∗
(

1− δ
γ+δ

) (18)

= α
γ

β

1

µ− α
(

1− δ
γ+δ

) (19)

is the equilibrium.

(**) In the case α∗
(

1− δ
γ+δ

)
− µ∗ > 0 then the death rate can not counterbalance

the birth rate and limt→∞ n(t) =∞.
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