
MATHEMATICAL MODELING 2013

SOLUTIONS TO EXERCISES 4-6

Exercise 4

{
dx
dt = ϕ− αx− βxy
dy
dt = γxy − δy

(1)

A resource-consumer model with a constant resource influx ϕ.

i-states

• X: resource (prey)

• Y : consumer (predator).

i-processes

Influx: �����
∅ ϕ−→ X (A)

Death: X
α−→ † (B)

Y
δ−→ † (C)

Capture of a prey: X + Y
β−γ−→ Y (D)

Capture of a prey and reproduction: X + Y
γ−→ 2Y (E)

with the assumption 0 < γ ≤ β.

It is also possible to exchange equations (D) and (E) with

Capture of a prey: X + Y
β− γ

n−→ Y (D∗)

Capture of a prey and reproduction: X + Y
γ
n−→ (n+ 1)Y (E∗)

These i-processes describe the equations (1).

Phase analysis for the system

(a) solve the equations {
ẋ = 0

ẏ = 0

The first equation gives

ẋ = 0⇔ y =
ϕ

βx
− α

β
(2)

and the second one gives

ẏ = 0⇔ y = 0 or x =
δ

γ
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(b) draw the isoclines

First of all, note that we want to interpret this system biologically and therefore we look
at the positive quadrant (x ≥ 0 and y ≥ 0).

Next, try to find the x for which y = 0 in equation (2), to see if there is an intersection
between the curve generated by equation (2) and x = δ

γ .

y = 0⇔ x =
ϕ

α

Therefore, we have 2 different cases to consider: ϕ
α ≤

δ
γ and ϕ

α >
δ
γ .

(*) The case ϕ
α ≤

δ
γ

x

y

0 ϕ
α

δ
γ

isocline of ẋ = 0

y = ϕ
βx −

α
β

isocline of ẏ = 0

Figure 1: Isoclines in the case ϕ
α ≤

δ
γ .

Remark 0.1. How to draw and use the graph:

• First, look at the conditions, in this case x, y ≥ 0 (shaded zone)

• Draw the isoclines of ẋ = 0 and ẏ = 0.

• Find where they cross: that gives the equilibrium and you can see if there are different
cases.

• Look at the direction of the flow.

Remember that when the flow crosses the isocline of ẋ = 0, it can cross only vertically
since ẋ = 0 so there is no speed in the x-direction. Similarly, the arrow of the direction
of the flow has to be horizontal when it crosses ẏ = 0.

To find the direction of the arrows in the region below the isocline of ẋ = 0 (red line),
take the point (0, 0) and use the equations (1) to find the sign of ẋ.
We find ẋ = ϕ > 0 (arrow to the right) but that point doesn’t work for ẏ.
Take another point, for example (ε, ε) and you find ẏ = γε2 − δε < 0 so the arrow
points downward and that extends to the region that doesn’t cross the isocline ẏ = 0.

• Look at the equilibrium, the intersection of the isoclines ẏ = 0 = ẋ and see in which
direction the arrows are going.
- At least one arrow pointing away from the equilibrium ⇒ not stable.
- All the arrows pointing toward the equilibrium ⇒ stable.
- Damn!! It’s turning around the equilibrium ⇒ need some further study to know. We
have to look at the eigenvalues of the Jacobi matrix. (See the case ϕ

α >
δ
γ )
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We see that the point (ϕα , 0) is a stable equilibrium. It is an equilibrium because it is the
intersection of y = ϕ

βx −
α
β and y = 0. Therefore ẋ = 0 and ẏ = 0 and (x, y) = (ϕα , 0). It is

stable because all the arrows are pointing toward the equilibrium.

(**) The case ϕ
α >

δ
γ

x

y

0 ϕ
α

δ
γ

(x̄,ȳ)

isocline of ẋ = 0

isocline of ẏ = 0

Figure 2: Isoclines in the case ϕ
α >

δ
γ .

Remark 0.2. There are 2 equilibria:

(
ϕ

α
, 0) and (x̄, ȳ) = (

δ

γ
,

ϕγ

βδ + γα
)

We see that an arrow is going away from the equilibrium (ϕα , 0) so it’s an unstable equilib-
rium.

For (x̄, ȳ), we see that the arrows indicate a rotative movement around the equilibrium.
Therefore, we need to look at the local stabililty.

We compute the Jacobi-matrix of the system{
f1(x, y) = ϕ− αx− βxy
f2(x, y) = γxy − δy

which is

A =

(
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

)
=

(
−α− βȳ −βx̄

γȳ γx̄− δ

)
=

(
−α− βȳ −βx̄

γȳ 0

)
where the last equality stands because x̄ = δ

γ

So as to know the sign of the real part of the eigenvalues, we simply look at the trace and
the determinant.

Remark 0.3. The characteristic polynomial is with eigenvalues λ1 and λ2 (which can be
the same):

det(A− λI) = (λ− λ1)(λ− λ2)
= λ2 − λ(λ1 + λ2) + λ1λ2

= λ2 − λtr(A) + det(A)

so if
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• det(A) > 0 then both eigenvalues have the same sign

– tr(A) > 0 then λ1 > 0 and λ2 > 0 and it’s unstable (source)

– tr(A) < 0 then λ1 < 0 and λ2 < 0 and it’s stable (sink)

• det(A) < 0 then the eigenvalues have opposite sign (saddle point).

In this case,
det(A) = γȳβx̄ > 0

so we know that the eigenvalues have the same sign.

Now, we turn to the trace
tr(A) = −α− βȳ < 0

Therefore, the eigenvalues are both negative and the equilibrium is stable.

Exercise 5

In the exercises we presented a method with minimized equations. You can also model the
dynamics of the larvae with at least two parasitoid eggs explicitly. This is how it is done:

1. i-states

• B: Butterfly (adult),

• P : Parasitoid (adult),

• L0: Larva without parasitoid egg,

• L1: Larva with 1 parasitoid egg,

• L2: Larva with at least 2 parasitoid eggs.

2. i-processes

Actions from the butterfly

butterfly produces an egg: B
α−→ B + L0 (1)

Actions from the parasitoid

parasitoid lies its egg inside a larva without eggs: P + L0
β0−→ P + L1 (2)

parasitoid lies its egg inside a larva with 1 egg: P + L1
β1−→ P + L2 (3)

parasitoid lies its egg inside a larva with at least 2 eggs: P + L2
β2−→ P + L2 (4)

Actions from the larva

larva (without egg) becomes a butterfly: L0
γ0−→ B (5)

larva with 1 egg becomes a parasitoid: L1
γ1−→ P (6)

larva with at least 2 eggs (and the eggs) die: L2
γ2−→ † (7)

Death

Butterfly: B
δB−→ † (8)

Parasitoid: P
δP−→ † (9)

Larva without egg: L0
δ0−→ † (10)

Larva with 1 egg: L1
δ1−→ † (11)

Larva with ≥ 2 eggs: L2
δ2−→ † (12)
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3. p-equations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
db
dt = +γ0l0 −δBb

dp
dt = +γ1l1 −δP p

dl0
dt = +αb −β0pl0 −γ0l0 −δ0l0

dl1
dt = +β0pl0 −β1pl1 −γ1l1 −δ1l1

dl2
dt = +β1pl1 −γ2l2 −δ2l2

To present it in a denser way

db

dt
= γ0l0 − δBb

dp

dt
= γ1l1 − δP p

dl0
dt

= αb− (β0p− γ0 − δ0)l0
dl1
dt

= β0pl0 − (β1p+ γ1 + δ1)l1

dl2
dt

= β1pl1 − (γ2 + δ2)l2

Exercise 6

Consider the model {
dx
dt = β(n0 − x)y − µx (site owner)
dy
dt = −β(n0 − x)y + αx− νy (free indiv.)

(3)

Let us use time-scale separation to split the system into two one-dimensional equations.

Assumptions: x, n0 � y

1. Introduce a small dimensionless parameter ε and define

x∗ =
x

ε
and n∗0 =

n0
ε

so that x∗ and n∗0 are the same order as y.

We have

x = εx∗, n0 = εn∗0 and
dx

dt
= ε

dx∗

dt

2. Rewrite the system (3) in terms of x∗, n∗0 and y. This gives{
dx
dt = εdx

∗

dt = βε(n∗0 − x∗)y − µεx∗ (site owner)
dy
dt = −βε(n∗0 − x∗)y + αεx∗ − νy (free indiv.)

(4)

3. Take the limit as ε→ 0 in the system (4){
dx∗

dt = β(n∗0 − x∗)y − µx∗ (fast)
dy
dt = −νy (slow)
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Problem, the second equation should be dy
dt = 0 to really split the problem into two one-

dimensional equations but if we consider that the rate of death for Y (i.e the individual
without territory) is very small compared to the rate of death for individuals with territory
then that solves our problem.

Try to find an example of that.

Additional condition:
ν � µ then we write ν = εν∗ and dy

dt = −νy = −εν∗y → 0.

That implies y is evolving slowly and x is evolving fast. Therefore, on a short time scale,
we can consider y = y(0) as constant. Now that we have our one-dimensional system, let
us consider the equation dx∗

dt = β(n∗0 − x∗)y − µx∗ where n∗0 is constant too. That gives

dx∗

dt
+ (βy(0) + µ)x∗ = βn∗0y(0) (5)

This is a linear differential equation of first order of the form ẋ∗ + ax∗ = b which has as
solution {

x∗(t) = Ce−at + b
a

= Ce−(βy(0)+µ)t +
βn∗

0y(0)
βy(0)+µ

The constant can be determined using the condition at the origin, x∗(0) = x∗0

x∗(0) = C +
βn∗0y(0)

βy(0) + µ

The most important is that x∗(t) converges to a constant as n→∞, the equilibrium.

lim
t→∞

x∗(t) =
βn∗0y(0)

βy(0) + µ
= x̄∗

An easier way to find the equilibrium is simply by saying that dx∗

dt = 0 in (5) and derive

that x̄∗ =
βn∗

0y(0)
βy(0)+µ .

A graphical interpretation is given in figure 3

x

ẋ

0
equilibrium

Figure 3: Graphical way to find the equilibrium x̄∗.

We’ve just solved the equation for the fast process. We turn now to the equation of the
slow one. Ee introduce the slow time t∗ = εt so d

dt = ε d
dt∗ . The system of equations (4)

gives
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{
dx∗

dt = εdx
∗

dt∗ = β(n∗0 − x∗)y − µx∗ (fast)
dy
dt = ε dydt∗ = −βε(n∗0 − x∗)y + αεx∗ − εν∗y (slow)

(6)

Let ε→ 0, then the system of equations (6) becomes{
0 = β(n∗0 − x∗)y − µx∗ (fast)
dy
dt∗ = −β(n∗0 − x∗)y + αx∗ − νy (slow)

(7)

The first equation resembles the equilibrium equation of the fast dynamics (except that
y(t∗) can vary) and therefore gives

x∗(t∗) =
βn∗0y(t∗)

µ+ βy(t∗)

If we introduce it in the second equation of (7), then, we find

dy

dt∗
= −βn∗0y + βx∗y + αx∗ − ν∗y

= −βn∗0y + β
βn∗0y(t∗)

µ+ βy(t∗)
y + α

βn∗0y(t∗)

µ+ βy(t∗)
− ν∗y

=
1

βy + µ
y (−βν∗y + (αβn∗0 − βn∗0 − µν∗))

Hence, dy
dt∗ = 0 if and only if y = 0 or y =

αβn∗
0−βn∗

0µ−µν∗
βν∗ .

We see that there are 2 cases: αβn∗0 − βn∗0µ− µν∗ > 0 and αβn∗0 − βn∗0µ− µν∗ ≤ 0

(a) case αβn∗0 − βn∗0µ− µν∗ > 0

y 0 ȳ
dy
dt∗ − + −
y ←− −→ ←−

Thus 0 is an unstable equilibrium (it’s a source) and ȳ is a stable equilibrium (it’s
a sink).

(b) case αβn∗0 − βn∗0µ− µν∗ < 0

y ȳ 0
dy
dt∗ − + −
y ←− −→ ←−

Thus ȳ is an unstable equilibrium (it’s a source) and 0 is a stable equilibrium (it’s
a sink). Remember that y ≥ 0 so the solution ȳ < 0 is not relevant in our problem.

(c) last case αβn∗0 − βn∗0µ− µν∗ = 0 then

dy

dt∗
=
−βν∗y2

βy + µ

y ȳ = 0
dy
dt∗ − −
y ←− ←−

ȳ = 0 shouldn’t be a stable equilibrium but since we have the condition y ≥ 0, it is
indeed a stable equilibrium.
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